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Introduction

It has long been understood that there are deep connections between algebraic number
theory and algebraic geometry. This has been known since these fields were in their infancy.

In this paper, we expose some of these deep connections, particularly the ones appearing
in the theory surrounding the Riemann-Roch theorem. This theorem (which we describe in
Section 1) is an extremely fundamental result in algebraic geometry which describes certain
spaces of functions on a given curve. In order to expose the connections between number
theory and geometry, we describe generally the basics of algebraic number theory with an
emphasis on its geometric aspects, and we specialize a little as well in order to describe an
arithmetic analogue of the Riemann-Roch theorem. This theorem is what we will call the
Riemann-Roch theorem for number fields, as in the title. In the second half of the paper,
we also see analysis enter the picture in an interesting way. This will lead to a new proof
of the Riemann-Roch theorem for number fields.

Organization

First we should note that the entire paper at hand provides very few proofs because this
theory, if developed in detail, could occupy many books. However, every result which is
needed is stated fully, and all of the main definitions are given.

This being said, we begin with an overview of the theory of nonsingular projective
curves. The reason for this is to have an organized description of the theory which we are
trying to mimic. Next we enter the theory of algebraic numbers and describe the proof of
the Riemann-Roch theorem for number fields. Then, since it will be beneficial to the later
developments in this paper, we introduce the theory of function fields. In the generality of
both number fields and function fields, we may then develop the local theory and the adelic
(global) theory of these objects. The resulting situation is that we will have a plethora of
locally compact abelian groups on our hands, and such groups have a rich analytic theory.
Hence we review the Fourier analysis associated to locally compact abelian groups and
apply it, as Tate did, to our number theory. This will lead to a different theorem which
also deserves the name of Riemann-Roch, and we then apply this theorem to obtain a new
proof the Riemann-Roch theorem for number fields, as mentioned above.
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Prerequisites and Conventions

Since this is an undergraduate thesis, we assume nothing beyond the following basic math-
ematics: Abstract algebra up through basic Galois theory; Real analysis through basic
abstract measure theory; Basic topology, not including differential geometry or algebraic
topology. However, the reader who is only familiar with these subjects will likely find this
material to be extremely dense. Also, when it improves the exposition, we have not hesi-
tated to include various comments which describe a more advanced theory for the sake of
the reader who has the necessary background. We always preface these comments with the
word “Remark”. Conversely, remarks are reserved for this purpose.
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1 The Geometry of Projective Curves

Classical abstract algebraic geometry is concerned with geometric objects which are locally
given by solution sets of polynomial equations over a field which is algebraically closed (i.e.,
every nonconstant polynomial with coefficients in the field has a root in that field.) The
reason one wants algebraic closure is given by the following theorem, which is false without
that hypothesis.

Theorem 1.1 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Let I ⊂
k[x1, . . . , xn] be an ideal in the ring of polynomials in n variables over k. Consider the set
V (I) which, by definition, consists of all n-tuples in kn at which all polynomials in I vanish
simultaneously. Finally, let J be the ideal of all polynomials which vanish on all points in
V (I). Then J =

√
I, where

√
I denotes the radical of the ideal I.

For the rest of this section, we fix an algebraically closed field k.
Let An denote the set kn, which is the cartesian product of k with itself n times. This

is called affine n-space. The definition of an (affine) algebraic set is any set of the form
V (I) as in the theorem, where I is an ideal in a polynomial ring k[x1, . . . , xn] for some
n. We can view an affine algebraic set as subset of An. In fact, it turns out that the
algebraic sets contained in An form the closed sets for a topology on An, called the Zariski
topology, which the algebraic sets themselves then inherit. Beware that this is a very strange
topology, which, for instance, is almost never Hausdorff.

We can then define the notion of dimension as follows. First, we call a topological space
irreducible if it cannot be decomposed into two disctinct closed subsets. The dimension of
a topological space X is then defined to be the length d of the longest chain of irreducible
closed subsets

∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xd,

each inclusion being proper. Notice that this is very similar to the definition of Krull
dimension of a ring R, which is, by definition, the length of the longest chain of prime
ideals in R. In fact, we have

Proposition 1.2. Let X be an algebriac set in An, defined by an ideal I. Then the dimen-
sion of X as a topological space is equal to the Krull dimension of the ring k[x1, . . . , xn]/I.

This is clarified by the following proposition, which is a consequence of the Nullstellen-
satz.

Proposition 1.3. There are one-to-one correspondences, each given by I 7→ V (I), between
the following:

(1) Radical ideals in k[x1, . . . , xn], and closed subsets of An;
(2) Prime ideals in k[x1, . . . , xn], and irreducible closed subsets of An;
(3) Maximal ideals in k[x1, . . . , xn], and points in An.

An algebraic set defined by a prime ideal is called an affine variety. Thus an affine
variety is an irreducible algebraic set. A quasi-affine variety is an open subset of an affine
variety. These varieties have more structure than just topology. We will now define certain
functions on these sets.
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Let X ⊂ An be a quasi-affine variety. A map f : X → k is called regular if it is locally
the quotient of two polynomials. In more detail, this means that there exists an open cover
(for the Zariski topology) {U} of X and polynomials gU , hU ∈ k[x1, . . . , xn] for each U ,
with hU not vanishing on U , such that f = gU/hU on U . The set of regular functions on
X forms a ring denoted O(X).

Let P ∈ X be a point. Then the local ring at P , denoted OP , is the ring of germs about
P . In more detail, it is the ring of equivalence classes 〈f, U〉, where f is regular on the open
set U which contains P , and the equivalence is given by 〈f, U〉 ∼ 〈g, V 〉 if f |W = g|W for
some open subset W ⊂ U ∩ V .

Now assume X is irreducible. As a consequence of the definition of irreducibility, any
two nonempty open subsets of X have nonempty intersection. A rational function on X
then has almost the same definition as an element in the local ring: A rational function is
an equivalence class 〈f, U〉, where f is regular on the open set U (not necessarily containing
any specific point), and the equivalence is given by 〈f, U〉 ∼ 〈g, V 〉 if f |W = g|W for some
open subset W ⊂ U ∩ V . The rational functions form a field denoted K(X), called the
function field of X.

Remark. What is really going on here is that we have naturally a sheaf on X which
associates to each open subset of X the regular functions on that subset. The local rings
are the stalks. The function field does not have a purely sheaf-theoretic description, at
least when X is only viewed as a variety. However, scheme-theoretically, the points of X
form the closed points of an integral scheme, and the function field is the residue field at
the generic point.

All of these functions have nice descriptions.

Proposition 1.4. Let X = V (I) ⊂ An be an affine variety. Then:
(a) O(X) ∼= k[x1. . . . , xn]/I;
(b) With this identification, let P ∈ X, let MP ⊂ k[x1, . . . , xn] be the maximal ideal

corresponding to P as in Proposition 1.3, and let mP = MPO(X). Then OP ∼= O(X)mP ,
and so OP is indeed local.

(c) K(X) ∼= Frac(O(X)).

Note that in (c) above, taking fraction fields makes sense because O(X) is an integral
domain, i.e., ab = 0 implies a = 0 or b = 0 in O(X). Recall that the fraction field of an
integral domain A is just the field obatined by formally adjoining the multiplicative inverses
of every nonzero element in A. Also, in (b) above, O(X)mP denotes the localization of OX
at the maximal ideal mP , which we recall is just the ring obtained by formally adjoining
the multiplicative inverses of all elements of O(X) not in mP . Finally, in reference again to
(b), we recall that a ring called is local whenever it has only one maximal ideal, and any
localization of a ring at a prime ideal is local.

Now for most purposes, it turns out that affine varieties are not the right objects to
consider. Technically, they fail to be proper (in a sense not to be explained here). So
we define a new type of variety. First we need the following construction. Let k× act on
kn+1\{0} by multiplication on each entry of a given tuple. We define the projective space
Pn to be equal to (kn+1\{0})/k×. Thus it is the set of all (n+ 1)-tuples (y0, . . . , yn), with
at least one component not zero, modulo scaling. One may also view it as the set of lines
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in An+1 passing through the origin.
For 0 ≤ i ≤ n, let Hi be the set of all points in Pn whose ith coordinate is 0. We

view these as hyperplanes. Then Pn\Hi is in bijection with An. Thus Pn is the union (not
disjoint) of n + 1 copies of An. The hyperplane H0 is sometimes called the hyperplane at
infinity, for the same reason a sphere is viewed as a plane with a point at infinity. We can
also remove other hyperplanes, defined by equations

∑n
i=0 aiyi = 0, and get other copies of

An. These do just as well.
There are two ways to proceed in order to topologize Pn and put functions on its

irreducible closed subsets. Either we can do everything locally in terms of the covering
by copies of An, or we could define the closed subsets to be zero loci of homogeneous
polynomials in k[y0, . . . , yn]. Both approaches are equivalent and both are necessary to
develop the theory. However, we will mainly adhere to the first approach in our description
of the theory, though we will take the second approach for the moment.

Now a homogeneous polynomial in k[y0, . . . , yn] is one which is invariant under scaling
each variable by a nonzero element of k. Thus it is a polynomial all of whose monomials
have the same total degree. Their zero sets in kn+1 are invariant under scaling, and thus
define subsets of Pn. We take these to be the closed sets. It is the equivalent to take the
open subsets of Pn to be unions of open sets in some copies of An which cover it.

Irreducible closed subsets of Pn are called projective varieties, and their open subsets
are quasi-projective varieties. Quasi-projective varieties have regular functions defined the
same way as affine varieties, but with homogeneous polynomials. Alternatively, a function
is regular on a quasi-projective variety if it is regular on every quasi-affine subset. Then
the local rings are defined the same way, and so are the function fields. These rings are all
denoted in the same way as in the affine case.

Proposition 1.5. Let X be a projective variety. Then:
(a) O(X) ∼= k;
(b) Let P ∈ X and U ⊂ X be an open affine subset which contains P . Then the local

ring of X at P is the local ring of U at P ;
(c) Let U ⊂ X again be an open affine subset. Then U is irreducible, its closure in An

is an affine variety, and the function field of its closure is the function field of X.

Remark. The fact that O(X) ∼= k above may be surprising because it is so different from
the affine case. Actually, this is no different than the situation in complex differential
geometry. For instance, the global holomorphic functions on a compact Riemann surface
are constant. The link between the theory of varieties over C and the theory of complex
manifolds is deep, but we will not go into this here.

A morphism ϕ : X → Y between varieties (affine, quasi-affine, projective, or quasi-
projective) is a map which is continuous and such that for any open subset V of Y and any
regular function f on V , f ◦ ϕ : ϕ−1(V )→ k is regular. In particular, a morphism X → Y
of affine varieties induces a homomorphism in the other direction O(Y ) → O(X) on the
rings of regular functions. In fact, we have

Proposition 1.6. The category of affine varieties, with morphisms defined as above, is
equivalent to the category of finitely generated integral domains over k via taking the ring
of regular functions.
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Note that we now have a notion of isomorphism; it is a morphism with a two-sided
inverse. The last thing we should say about morphisms for now is the following.

Proposition 1.7. Let X be a variety.
(a) When k is identified with A1 with its Zariski topology, then the regular functions

X → k are precisely the morphisms X → A1.
(b) For every rational function f on X, there is a unique largest open subset U ⊂ X on

which f can be defined such that f is regular on U . Now view P1 = A1∪H0 in our notation
above, so that H0 consists of one point, which we denote by ∞. If we declare f to take on
the value ∞ at the places where it is not defined, then f is a morphism to P1. Conversely,
all rational functions come from morphisms to P1.

We now specialize to projective varieties of dimension 1, i.e., curves, because this theory
is what will be mimicked in arithmetic. The Zariski topology on a curve is just the cofinite
topology. It can be shown without too much effort that every curve has a cover consisting
of exactly two open affine subsets. The compliment of one of these is a finite set, and should
be thought of as “points at infinity” with respect to the open affine subset of which they
are the compliment.

Let X be a curve and P ∈ X. Let mP denote the maximal ideal in the local ring OP .
It turns out that the residue field OP /mP is k. Then we define X to be nonsingular, or
smooth, at P if mP /m

2
P is a one-dimensional k-vector space.

Remark. It happens that, given any point P on a projective variety, the vector space
mP /m

2
P is a good analogue of the cotangent space from differential geometry. One sees

this during the development of the algebraic theory of differential forms. Nonsingularity in
higher dimensions means that mP /m

2
P has dimension as a k-vector space the same as the

dimension of the variety. Thus nonsingularity corresponds to the cotangent space having
the right dimension.

Nonsingular curves appear in two other guises, both of which will inspire our develop-
ments in the sequel. The first is this.

Proposition 1.8. There is an equivalence of categories between the category of nonsin-
gular projective curves with non-constant morphisms of varieties, and the category of field
extensions of k of transcendence degree 1 with k-homomorphisms. The equivalence is given
by taking function fields.

The nonsingularity hypothesis is essential here. If a curve X is singular, then its function
field will be the function field of some nonsingular curve, which turns out to be obtainable
from the curve X by resolving its singularities, in manners which will not be touched upon
here.

So we see that all of the information about a nonsingular curve is essentially contained
in its function field. To make this more explicit, we describe the second guise in which
nonsingular curves appear. Let X be a nonsingular curve. First of all, one can show,
using the nonsingularity hypothesis, that the local rings of X are discrete valuation rings.
This means they are local principal ideal domains. Also, their fields of fractions are K(X).
Thus a point gives rise to a discrete valuation ring with fraction field K(X), and the next
proposition shows that this process is reversible.
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Proposition 1.9. The points of a nonsingular curve X are in bijection with the discrete
valuation rings contained in K(X) with fraction field K(X).

A morphism X → Y on this level would correspond to an inclusion of function fields
K(Y ) ↪→ K(X) as well as intersecting the discrete valuation rings of K(Y ) with K(X)
itself.

Now we come to divisors. We fix a nonsingular curve X. Denote by Div(X) the free
abelian group on the points of X. The elements of Div(X) are called divisors. We think
of a divisor D as a sum of points with multiplicities, and we often write D =

∑
P∈X nPP

where nP ∈ Z and all but finitely many of the nP are zero.
Divisors may be thought of as a tool to examine the zeros and poles of rational functions.

We can easily say what it means for a rational function on X to vanish or to have a pole:
When viewed as a morphism to P1, a rational function f ∈ K(X) vanishes at P if it takes
the value 0 = 〈1, 0〉 ∈ P1 at P , and it has a pole at P if it takes the value ∞ = 〈0, 1〉 at P .
Here, 〈a, b〉 is our notation for the class of the point (a, b) ∈ k2\0 modulo k×.

Remark. For a large class of varieties, or even for some schemes, this notion of divisor
generalizes to what is called a Weil divisor. There is another notion of divisor, called
a Cartier divisor, defined for an arbitrary scheme, which is not always equivalent to the
notion of Weil divisor. However, one can show that the two notions coincide on a certain
class of schemes. Now Cartier divisors show up in the theory of line bundles. In fact, the
two theories are essentially equivalent. Thus, in nice cases, the theory of Weil divisors is, in
some sense, equivalent to the theory of line bundles. We will not define line bundles here,
but we will study the vector spaces L(D) which turn out to be the spaces of global sections
of certain line bundles arising from this theory.

Now it is not immediately clear what it should mean for a rational function to vanish
to order n or have a pole of order n. For this, we must examine the local rings of X. Let
f be a nonzero rational function which is regular at P . Then f defines an element of the
local ring OP . The function f will vanish at P if it is not invertible in OP , i.e., if it is in
mP . Now since OP is a discrete valuation ring, mP is principal. Say it is generated by π.
Then f can be uniquely written as f = uπm where m ≥ 0 is an integer and u ∈ O×P . The
number m is the order of vanishing of f , and it is denoted vP (f). It is independent of the
choice of π.

If f has a pole at P , then we apply this same process to 1/f and take the negative of
the result to obtain the order of the pole.

Proposition 1.10. The function vP is a well defined homomorphism K(X)× → Z for all
P . For any given f ∈ K(X)×, the number vP (f) is not zero for only finitely many points
P .

Let f ∈ K(X)×. Then we can define a divisor div(f) =
∑

P∈X vP (f)P . By the
proposition, this is a well defined homomorphism K(X)× → Div(X). We denote the image
of div by P (X) and call its elements principal divisors. Denote the group Div(X)/P (X)
by Cl(X) and call this the divisor class group. Thus the divisor class group contains
information about what combinations of zeros and poles rational functions are allowed to
have. The next proposition will imply that this group is infinite, but we need to define
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another homomorphism before stating it.
Let D =

∑
nPP be a divisor. We define degD, called the degree of D, to be the integer∑

nP . This defines a homomorphism Div(X)→ Z.

Proposition 1.11.
deg ◦ div = 0.

Thus the degree factors through Cl(X). Since there exists divisors of all degrees, we
have an exact sequence

0→ Cl◦(X)→ Cl(X)→ Z→ 0,

where Cl◦(X) denotes the divisor classes of degree zero. So Cl(X) is infinite. In fact, even
the group Cl◦(X) is often highly nontrivial. We will remark on this later.

We are getting close to being able to state the Riemann-Roch theorem. Let D =
∑
nPP

be a divisor on X. We define the k-vector space

L(D) = {f ∈ K(X)× | vP (f) ≥ −nP for all P ∈ X} ∪ {0}.

The dimension of this space turns out to be finite for all D, and is denoted `(D). This
number is called the length of D. It remains the same if we add to D a principal divisor,
i.e., ` is well defined on Cl(X).

Theorem 1.12 (Riemann-Roch). Let X be a nonsingular projective curve over k. There
exists a divisor class K, depending only on X, such that for any divisor D, we have

`(D)− `(K −D) = degD + 1− g

where g = `(K) is called the genus of X.

This theorem is extremely deep, and it offers very useful information about the projec-
tive geometry of the curve X. The proof is very difficult. Hartshorne proves it in his text
using methods from the cohomology of schemes. The main step is a deep theorem of Serre,
which is often called Serre duality.

Weil’s proof of this theorem uses his répartitions, or adeles. See Serre [12]. These are
like the adeles we will encounter in number theory later.

Remark. Serre duality states, in the one-dimensional case, that there is a relation amongst
cohomology groups,

H1(X,L(D)) = H0(X,L(D)̌ ⊗ ΩX/k),

where L(D) is the line bundle associated to the divisor D, ΩX/k is the sheaf of differentials
on X, and the check denotes the dual. The divisor class K of the Riemann-Roch theorem
is the one corresponding to the line bundle ΩX/k.

Remark. The group Cl◦(X) has a natural structure of abelian variety, and with this
structure Cl◦(X) is called the Jacobian of X. Its dimension as a variety is equal to the
genus of X.
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2 Number Fields, Minkowski Theory

A number field is a finite field extension of the rationals Q (i.e., its degree over Q, or its
dimension as a Q-vector space, is finite.) Its degree is its degree as an extension field of Q.
Just as a lot of information about Q is contained in its subring Z, a number field has a
canonical subring which contains a good deal of its information. It is constructed as follows.

Fix an arbitrary integral domain A. Let K be its field of fractions, and let L be an
extension field of K. The main example to keep in mind is A = Z, so that K = Q and L
is a therefore a number field. An element α ∈ L is called integral over A if it is the root of
a monic polynomial equation with coefficients in A,

0 = αn + cn−1α
n−1 + · · ·+ c1α+ c0

with ci ∈ A for all i. The set of all elements of L which are integral over A forms a
ring (which is not obvious) called the integral closure of A in L. An integral domain is
integrally closed, or is an integrally closed domain, if it is its own integral closure in its field
of fractions.

Definition 2.1. Let K be a number field of degree n. We define the subring OK of K to
be the integral closure of Z in K, as in the previous paragraph. This is called the ring of
integers in K.

The ring of integers in a number field should be viewed as analogous to the ring of
regular functions on an open affine subset of a nonsingular curve, and the number field
itself should be viewed as analogous to the function field of the curve. This analogy is
extremely deep, and it is the main one which will be pursued in this paper.

Example. (0) Let K = Q. Then OK = Z. This is a standard exercise which we leave to
the reader.

(1) Let K be the number field Q(i) = {a + bi | a, b ∈ Q}, where i =
√
−1. Then

OK = Z[i] = {a + bi | a, b ∈ Z}. This can be seen by considering the field theoretic
norm and trace (see Definition 2.6 later.) The point is that the norm and trace of any
element in OK is again in OK , but also in Q, hence is in Z. Thus if a + bi ∈ OK , then
Nm(a+ bi) = (a+ bi)(a− bi) = a2 + b2 and Tr(a+ bi) = a+ bi+ a− bi = 2a are in Z, from
which one sees easily that a, b ∈ Z.

(2) Now let K = Q(
√
−3). Then Z[

√
−3] ⊂ OK , but this inclusion is proper. In fact,

OK = Z[1−
√
−3

2 ] (Note that α = 1−
√
−3

2 is a third root of unity and satisfies α2 +α+1 = 0.)
So it is not always true that OQ(α) = Z[α], even when α is integral.

Now Z is a principal ideal domain, and hence has unique prime factorization. It is an
extremely important point that OK very often does not have unique factorization. If it
did, we would actually have on our hands an easy proof of Fermat’s last theorem! See [6],
Chapter 7, Section 1.2 for details.

To salvage the unique factorization property, one works with prime ideals instead of
irreducible elements. In fact, it is convenient to introduce a more general type of ring
which will have unique factorization into prime ideals.

A Dedekind domain is a noetherian integrally closed domain of Krull dimension 1. The
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integers Z form a Dedekind domain, and the integral closure of a Dedekind domain in a
finite extension of its field of fractions is again a Dedekind domain. Thus rings of integers
OK are Dedekind domains. Other examples are discrete valuation rings, and so the local
rings of a nonsingular curve are Dedekind domains. Actually, localizations of Dedekind
domains at their maximal (i.e., nonzero prime) ideals are discrete valuation rings, and so
the localization of a ring of integers at a nonzero prime ideal is a discrete valuation ring.
Thus we see some more similarities between rings of integers and rings of regular functions.

A fractional ideal in a Dedekind domain A is an A-submodule a of the fraction field K
of A such that there exists an α ∈ A such that αa ⊂ A, that is, αa is an ideal. Equivalently,
it is a finitely generated A-submodule of K. We denote by J(A) the set of all nonzero
fractional ideals.

For two fractional ideals a, b, define their product to be the ideal generated by pairwise
products of elements in a and b:

ab = (αβ | α ∈ a, β ∈ b).

The product of two fractional ideals is again a fractional ideal, and we have

Theorem 2.2. Let A be a Dedekind domain. Then the product above turns J(A) into a
group with identity A. The inverse is given by

a−1 = {α ∈ K | αa ⊂ A}.

The group J(A) is free abelian on the nonzero prime ideals of A, and so every nonzero
fractional ideal a can be uniquely factored as

a =
∏
p

pnp ,

where the product is over all nonzero prime ideals of A, and the np are uniquely determined
integers, almost all of which are zero. Moreover, all of the np are positive if and only if a
is an ideal.

Thus the group J(OK) looks like a good analogue of the divisor group of a nonsingular
curve, but actually it is only a good analogue of the divisor group on an open affine subset
of a curve. For instance, the analogue of deg ◦ div = 0 will not hold here. In the next
section, we will introduce a better analogue of the divisor group.

Remark. It is true, however, that for a Dedekind domain A, the group of Weil divisors on
SpecA and the group J(A) are naturally isomorphic. But SpecOK is not a proper scheme.
This is the problem. However, Arakelov theory makes a good attempt at overcoming this
problem.

One can also define something which looks like the divisor class group as follows. Let
A be a Dedekind domain, and define P (A) to be the set of all nonzero principal fractional
ideals. These are the fractional ideals which are generated as A-modules by one element.

Definition 2.3. We define the ideal class group of a Dedekind domain A to be C(A) =
J(A)/P (A), where J(A) and P (A) are as above.
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The ideal class group naturally measures how close a Dedekind domain is to being a
principal ideal domain. In fact, a Dedekind domain is principal if and only if it is a unique
factorization domain, so this group actually measures the failure of unique factorization.

We move now to ramification theory. Let us simply call the nonzero prime ideals of a
Dedekind domain “primes”.

Let A be a Dedekind domain with fraction field K, L a finite extension of K, and B
the integral closure of A in L. Let p be a prime of K. Then a prime P of L is said to lie
over p if P ∩A = p.

When p is a prime in A, we can form the ideal pB and then factor it,

pB = Pe1
1 · · ·P

er
r .

The factorization will contain all of the primes in B which lie over p. The numbers ei are
called the ramification indices of p. We always have ei ≥ 1, and if ei > 1, we say Pi is
ramified and that p ramifies.

When K and L are number fields and A and B are the respective rings of integers, this
situation is analogous to a morphism of nonsingular curves X → Y . In this case, K is
like K(Y ) and L is like K(X). The morphism is the same as intersecting the local rings
of K(X) with K(Y ). Here we are intersecting primes of L with OK , but it is the same
to intersect the localization of OL at a prime P with K. When this is done, we obtain a
subring of K which is equal to the localization of OK at P∩OK . There is also a notion of
ramification in algebraic geometry, and it behaves well with this analogy, but we will not
need it here.

Returning to our situation, we will also define another invariant of the extension of
primes Pi/p. It is not hard to see that there is an inclusion of residue fields A/p ↪→ B/Pi

(these are indeed fields because primes are maximal in Dedekind domains by definition).
The degree of this field extension is finite and is denoted fi. This is called the inertia degree.

Theorem 2.4. Let A be a Dedekind domain with fraction field K, L a finite extension of
K of degree n, and B the integral closure of A in L. Let p be a prime of A, factored in B
as

pB = Pe1
1 · · ·P

er
r .

Then
r∑
i=1

eifi = n.

If L/K is moreover Galois, then the Galois group Gal(L/K) permutes the primes above p
transitively. Consequently, all of the ramification indices are equal, to e, say, and all of the
inertia degrees are equal, to f , say, and hence

ref = n.

Now let K be a number field of degree n. Its ring of integers OK is a free abelian group
of rank n, additively. We call a basis of OK as a free abelian group an integral basis. Let
Q̄ be a fixed algebraic closure of Q, and view K as a subfield of Q̄. Then there are exactly
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n homomorphisms of K into Q̄. Denote them by τ1, . . . , τn. Let α1, . . . , αn be an integral
basis. We form the matrix

A =


τ1α1 τ1α2 · · · τ1αn
τ2α1 τ2α2 · · · τ2αn

...
...

. . .
...

τnα1 τnα2 · · · τnαn

 .
Then we define ∆K = detA2.

Definition 2.5. The number ∆K defined above is called the discriminant of the number
field K.

It turns out that the discriminant of a number field is a nonzero integer which is inde-
pendent of the choice of integral basis. It is a very important invariant of K.

When L/K is an extension of number fields, there is a closely related invariant. To
define it, we recall a definition from field theory.

Definition 2.6. Let E/F be a finite separable extension of fields. Let σ1, . . . , σn be all of
the embeddings of E into a separable algebraic closure F̄ of F . Then the trace and norm
of an element α ∈ E are respectively defined by

TrE/F α =
n∑
i=1

σiα, NmE/F α =
n∏
i=1

σiα.

Both are elements of F .

Now consider the set

CL/K = {β ∈ L | TrL/K β ∈ OK}.

This is a fractional ideal of OL, called Dedekind’s complimentary module. We define

DL/K = C−1L/K .

The fractional ideal DL/K is an ideal, called the different of L/K. We have the following
theorem.

Theorem 2.7. Let L/K be an extension of number fields and let P be a prime of L (i.e.,
a prime of OL). Then P is ramified if and only if it appears in the factorization of the
different DL/K . We also have

|OK/DK/Q| = |∆K |
where |OK/DK/Q| denotes the cardinality of the set OK/DK/Q. One can show that this
implies that a prime of Z ramifies in K if and only if it divides the discriminant of K.

In particular, given any extension of number fields, there are only finitely many primes
which ramify in that extension.

If a is a nonzero ideal in OK , we denote by Na the order of the residue ring OK/a. One
can show that this is always finite, and that it is multiplicative, i.e., N(ab) = NaNb. Thus
it extends to a homomorphism from the group of fractional ideals J(OK) to Q×, which will
be important to us in the sequel.

12



Definition 2.8. The function N : J(OK) → Q× is the unique homomorphism such that
Na is the cardinality of the ring OK/a if a is an ideal (that is, when a ⊂ OK).

We now begin to study Minkowski theory. The idea of this theory is to embed a number
field K of degree n into Rn and study the geometry of this embedding. Let us explain this
embedding now. By Galois theory, there are exactly n embeddings of K into any fixed
algebraically closed field of characteristic 0. So write

Hom(K,C) = {σ1, . . . , σr, σr+1, σ̄r+1, . . . , σr+s, σ̄r+s},

where the notation is explained as follows. The first r embeddings have image contained in
R, and they are called real embeddings. The last 2s, called complex embeddings, intersect
C\R. Hence the complex embeddings come in complex conjugate pairs. By definition,
n = r + 2s.

Consider the R-vector space Rr×Cs, which is isomorphic to Rn. Define i : K → Rn via
the map K → Rr × Cs given by

α 7→ (σ1α, . . . , σr+sα),

where we choose only one embedding from each pair of complex embeddings. This is an
embedding because it is injective on each component.

A lattice in Rn is by definition a subgroup of Rn spanned as a free abelian group by a
basis of Rn. It is discrete in the euclidean topology. Let Λ ⊂ Rn be a lattice spanned by a
basis λ1, . . . , λn. A fundamental parallelepiped of Λ is a set of the form

F =

{
n∑
i=1

aiλi

∣∣∣∣∣ 0 ≤ ai ≤ 1 for all i

}
.

A fundamental parallelepiped depends on a basis, but its volume (under the Lebesgue
measure) does not.

Proposition 2.9. Let i : K → Rn be as above, and let a be a nonzero fractional ideal of
OK . Then i(a) is a lattice in Rn and the volume of any of its fundamental parallelepipeds
is equal to 2−s

√
|∆K |Na, where, as before, 2s is the number of complex embeddings of K.

Example. (1) Let K = Q(i), so that OK = Z[i]. The field Q(i) has degree 2, so it has two
embeddings into C. One is the embedding sending a + bi ∈ Q(i) into the same thing, but
with a, b ∈ Q viewed as real numbers, and the other is the conjugate of this embedding. To
define the map i, we (arbitrarily) choose the former embedding, and this embeds Z[i] into
the grid of numbers in C with integer real and imaginary parts.

(2) Let K = Q(
√

2). One can show that OK = Z[
√

2]. The field K has two embeddings
into C and they are both real. They are determined by sending

√
2 ∈ K into either

√
2 ∈ R

or −
√

2 ∈ R. Then, letting σ1 be the first of these embeddings, and σ2 the other, we see
that i(a+ b

√
2) = (a+ b

√
2, a− b

√
2) ∈ R2. In particular, since {1,

√
2} is an integral basis

for the ring of integers OK = Z[
√

2], we find that the lattice i(OK) is generated (as a free
abelian group) by the vectors (1, 1) and (

√
2,−
√

2).

13



Definition 2.10. For a number field K, let hK denote the order of the ideal class group
C(OK) of the ring of integers in K, defined in Definition 2.3. The number hK is called the
class number of K.

One uses Minkowski theory to prove

Theorem 2.11. The class number hK is finite.

Thus rings of integers in a number field K do not deviate too far from being unique
factorization domains, in some sense.

Let us very briefly outline the proof of this fact. First one puts an explicit and uniform
bound on the largest of the smallest nonzero element of a fractional ideal. More precisely,
given a fractional ideal a, there is a nonzero element α ∈ a such that

|NmK/Q α| ≤
(

4

π

)s n!

nn
Na
√
|∆K |,

where, recall, n is the degree of K, s is the number of complex embeddings, and ∆K is the
discriminant of K. To prove this, one must locate an element of small size in the lattice
i(a). The ability to do this is furnished by

Theorem 2.12 (Minkowski). Let Λ be a lattice in Rn with fundamental parallelepiped F .
Let X ⊂ Rn be a compact region which is convex (any two points in X can be joined by a
line segment in X) and symmetric about the origin (x ∈ X implies −x ∈ X). If the volume
of X exceeds 2n Vol(F ), then X contains a nonzero lattice point.

One then shows that the above bound implies that every ideal class has an integral (i.e.,
in OK) representative a such that

Na ≤
(

4

π

)s n!

nn

√
|∆K |.

But it is easy to see that there are only finitely many primes in Z which lie under primes
satisfying this, or any, bound. By unique factorization and the fact that the function N is
multiplicative, this would complete the proof.

A nice consequence of this proof is that the first bound above implies that, since the
norm of an integral ideal is always a positive integer,(π

4

)s nn
n!
≤
√
|∆K |

One can show that the expression on the left is always larger than 1 for n ≥ 2, so there are
no unramified extensions of Q!

Finally, we would like to describe a similar construction for K×. Write again

Hom(K,C) = {σ1, . . . , σr, σr+1, σ̄r+1, . . . , σr+s, σ̄r+s}.

Define a map log : K× → Rr+s via

α 7→ (log |σ1α|, . . . , log |σr+sα|),
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where, again, we only choose one embedding from each pair of complex embeddings. Define
the hyperplane H ⊂ Rr+s by the equation

x1 + · · ·+ xr + 2xr+1 + · · ·+ 2xr+s = 0

where the xi’s are the coordinates of Rr+s. One can prove that the norm over Q of any
element of O×K is ±1. This implies that log takes O×K into H. In fact,

Theorem 2.13. The set log(O×K) forms a lattice in H.

An immediate consequence is

Theorem 2.14 (Dirichlet’s Unit Theorem). The group O×K is a finitely generated abelian
group of rank r + s− 1 with torsion the roots of unity in K.

In the next section, we will make a deeper study of the analogies between number fields
and the function fields of nonsingular curves, and use Minkowski theory to outline the proof
of the Riemann-Roch theorem for number fields.

3 The Riemann-Roch Theorem for Number Fields

Fix throughout this section a number field K of degree n. There are r real embeddings
and 2s complex embeddings. The embedding K ↪→ Rn is still denoted i, and Rn will be
identified with Rr×Cs. It will be convenient to give C twice the Lebesgue measure, so that
the fundamental parallelepiped of i(OK) gets measure exactly

√
|∆K |, without the factor

of 2−s as before.
Now we have seen that the primes of a number field behave like the points on an open

affine subset of a nonsingular curve. There is a very good idea about what the analogue of
the points at infinity should be. It turns out that the analogue of the points at infinity is
the set of embeddings of K into C modulo complex conjugation. This may seem strange to
a reader who is not familiar with this idea, so we make an attempt to explain this briefly.
In any case, this will become clearer when we discuss the local theory.

Now each prime p of K gives rise to an absolute value on K, called the p-adic absolute
value. Let us say exactly what this means.

Definition 3.1. An absolute value on a field k is a map | · | : k → R≥0 for which:
(1) |α| ≥ 0 for all α ∈ k, equality holding if and only if α = 0;
(2) |αβ| = |α||β| for all α, β ∈ k;
(3) [Triangle inequality] |α+ β| ≤ |α|+ |β| for all α, β ∈ k.
An absolute value on k gives rise to a metric via the rule d(α, β) = |α−β|. Two absolute

values are equivalent if their metrics induce the same topology on k.

The p-adic absolute value on K is defined as follows. For α ∈ K, let (α) be the principal
fractional ideal generated by α, and let (α) =

∏
p p

np be its unique factorization into prime
ideals. Define vp(α) = np.

Definition 3.2. With notation as above, we define the p-adic absolute value of α ∈ K by

|α|p = (Np)−vp(α).
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This is an absolute value on K, and in fact it satisfies a stronger condition than the
triangle inequality:

(3′) [Ultrametric inequality] |α+ β| ≤ max{α, β}.
An absolute value satisfying the ultrametric inequality is called non-archimedean. Oth-

erwise it is archimedean. Now we get archimedean absolute values on K by choosing an
embedding K ↪→ C and restricting the absolute value on C to K. The absolute value
coming from an embedding σ is therefore the same as the absolute value coming from σ̄,
which accounts for the desire to consider the set of embeddings K ↪→ C modulo complex
conjugation.

Finally, there is the trivial absolute value on a field k, given by |α| = 1 if α 6= 0. This
gives the discrete topology. We will always assume that our absolute values are nontrivial.

Example. If K = Q, let p be a prime ideal, generated by a positive prime p, say. Then
the p-adic absolute value is also called the p-adic absolute value, and it does the following.
Let 0 6= α ∈ Q. Write α = a/b, a, b ∈ Z with a and b coprime. If p divides either a or b,
we can extract that power of p from the fraction and write α = pm(c/d) with m ∈ Z and
p, c, d all coprime. Then |α|p = p−m. In other words, the p-adic absolute value extracts the
power of p in its argument, then inverts it.

An archimedean absolute value on Q is the usual one: |α| is α if α is positive, and
−α otherwise. In fact, the only absolute values on Q are this one and the p-adic ones for
various p, as we will see now.

The following theorem in the case K = Q is called Ostrowski’s theorem.

Theorem 3.3. The set of nontrivial absolute values on K, up to equivalence, consists of
the p-adic ones, which are all inequivalent for each prime p, and the ones coming from
embeddings K ↪→ C, which are all inequivalent up to complex conjugation.

Let VK denote the set of nontrivial absolute values on K up to equivalence. This set
is the disjoint union of the set Vf of non-archimedean absolute values and the set V∞ of
archimedean absolute values. The set Vf is in bijection with the prime ideals of K, and
we call its elements finite primes, or finite places. The set V∞ is in bijection with the
embeddings K ↪→ C modulo complex conjugation, and we call its elements infinite primes,
or infinite places. For p ∈ Vf , we write p -∞, and for p ∈ V∞, we write p|∞. The set VK is
our analogue of the points on a nonsingular projective curve.

Now we are ready to discuss the Riemann-Roch theory. We follow loosely the presen-
tation of Neukirch [9].

First we define the replete ideals.

Definition 3.4. A replete ideal is an element of the set of formal products

J(ŌK) =

∏
p∈Vf

pnp × (np)p∈V∞

∣∣∣∣∣∣np ∈ Z if p -∞, np ∈ R>0 if p|∞, np = 0 for almost all p

 ,

where “almost all” means “all but finitely many”.

This is a group under component-wise multiplication. It is isomorphic to J(OK)×Rr+s>0 ,
where J(OK) is the group of fractional ideals of OK .
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Definition 3.5. We define the group (under component-wise addition) of Arakelov divisors
as

Div(ŌK) =

∑
p∈VK

npp

∣∣∣∣∣∣np ∈ Z if p -∞, np ∈ R if p|∞, np = 0 for almost all p

 .

This is the analogue of the divisor group. The fact that we choose the infinite compo-
nents to take on real values stems from the fact that the image of K× under the infinite
absolute values is dense in R>0, while the image of K× under the finite absolute values is
a discrete subset of R>0.

Now the groups J(ŌK) and Div(ŌK) are obviously isomorphic, but we will define a
nontrivial isomorphism between them. Let L : J(ŌK)→ Div(ŌK) be defined by∏

p∈VK

pnp 7→
∑
p-∞

−npp +
∑
p real

−(log np)p +
∑

p complex

−(2 log np)p.

This should be viewed as extracting valuations, i.e., taking vp of each component. In fact,
to unify notation, for α ∈ K, set vp(α) = − log |α|p for p real, and vp(α) = −2 log |α|p for
p complex. Here | · |p means the absolute value induced on K by the embedding K ↪→ C
corresponding to p.

Define div : K× → Div(ŌK) by

div(α) =
∑
p

vp(α)p.

This is the analogue of the function div from algebraic geometry. Define also the function
deg : Div(ŌK)→ R via ∑

npp 7→
∑
p-∞

np logNp +
∑
p|∞

np.

This is the analogue of the degree, and we have

Theorem 3.6 (Product Formula).

deg ◦div = 0.

This is a rephrasing of what is classically called the product formula. The classical
version is formulated as follows. For p ∈ VK , let | · |p be the P-adic absolute value if p
comes from a prime ideal P of K, and let it be the restriction of the absolute value on C
if p comes from an embedding K ↪→ C. These are canonical choices of representatives of
each equivalence class in VK . If p is finite or real, we write ‖ · ‖p = | · |p. If p is complex, we
write ‖ · ‖p = | · |2p. The square of the absolute value at the complex places turns out to be
a good choice for arithmetic purposes, and we will see this more than once in this paper.

Theorem 3.7 (Product Formula, Classical). Let α ∈ K×. Then∏
p∈VK

‖α‖p = 1.

This product makes sense because all but finitely many of the terms are equal to 1.
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We now incorporate Minkowski theory into this situation. Let a be a replete ideal. Let
af denote the finite component of a, i.e., the fractional ideal obtained via the first projection
through the isomorphism J(ŌK) ∼= J(OK) × Rr+s>0 . The second projection gives a vector
a∞ in Rr × Rs, which we view as embedded in Rr × Cs. Now i(af) is a lattice in Rr × Cs.
Define, by abuse of notation, i(a) = a∞ · i(af), with the multiplication of vectors in Rr×Cs
being component-wise. In other words, we skew the lattice i(af) by the infinite components
of a.

Definition 3.8. If a =
∏

pnp is a replete ideal, we define

Na = Naf ·
∏
p real

np ·
∏

p complex

n2p.

We denote the volume of the fundamental parallelepiped of i(a) by Vol(a) so that

Vol(a) = Na
√
|∆K |.

There is no 2−s because we have given C twice the Lebesgue measure. Now we define

χ(a) = − log Vol(a).

This is the Euler characteristic. We can also define it on Div(ŌK) by precomposition
with L−1. The Euler characteristic of an Arakelov divisor is the analogue of the quantity
`(D)− `(K −D), which is also called the Euler characteristic of D in algebraic geometry.

Remark. Let X be a projective scheme over a field k, and L a line bundle on X. One
can define the Euler characteristic χ(L) to be the alternating sum of the dimensions of the
cohomology vector spaces of L. The terms in this sum are finite by a theorem of Serre, and
they vanish beyond the dimension of X by a theorem of Grothendieck. See Hartshorne [3]
for details.

In case X is a nonsingular curve and k is algebraically closed, the Euler characteristic
χ(L(D)) is equal to `(D)− `(K−D) by Serre duality. As well, if OX denotes the structure
sheaf of X, then χ(OX) = `(0)− `(K) = 1− g. Hence the Riemann-Roch theorem states

χ(L(D)) = degD + χ(OX).

Let O denote the Arakelov divisor which is the identity of the group Div(ŌK). To
differentiate the following theorem from the one in the title of this paper, we use the word
“formula” instead of “theorem”. Its proof is a trivial computation.

Theorem 3.9 (Riemann-Roch Formula, First Form). For any D ∈ Div(ŌK) we have

χ(D) = degD + χ(O)

Even though the analogy with algebraic geometry will be just slightly less clear, it will
now be convenient to begin stating results in terms of replete ideals instead of Arakelov
divisors. Any function we have on Div(ŌK) we understand to be defined on J(ŌK) by
precomposition with L−1, and vice-versa by composition with L. Note also that deg and N
are related by

deg(L(a)) = − logNa.
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Definition 3.10. Let a =
∏
Vf
pnp × (np)V∞ be a replete ideal. We define

H0(a) = {α ∈ K× | vp(α) ≥ np for p -∞, |α|p ≤ n−1p for p|∞} ∪ {0}.

H0(a) is (essentially) the analogue of L(D) from algebraic geometry: L(D) is the set
of functions on a curve X which have poles of degrees at most that which is specified
by the divisor, while H0(a) is the set of all numbers in K whose valuations are at least
what is specified by the replete ideal. Notice the discrepancy between “at least” and “at
most.” This is remedied by defining a set in number theory which consists of 0 and all the
reciprocals of elements in H0(a). Such a set would be a more ideal analogue of L(D), but
it would still be in bijection with H0(a. Since H0(a) is easier to work with, we take its
definition as our working definition of an analogue of L(D).

Now note that H0(a) is a finite set: the conditions at the finite places imply that H0(a)
is a subset of af . Thus, passing through the Minkowski embedding of af into Rr × Cs, we
realize that H0(a) can be viewed as precisely the set of lattice points (x1, . . . , xr+s) ∈ i(af)
subject to the bounds |xi| ≤ n−1pi , where pi is the infinite place corresponding to the ith
embedding of K into C from the definition of the embedding i. We now define

`(a) = log
|H0(a)|
2r(2π)s

.

This is the analogue of `(D).
Some comments are in order. In Neukirch [9], he defines H0(a) the same way but

without adjoining 0. Then `(a) is defined by our same formula, and hence is not well
defined if H0(a) has no elements. (Actually Neukrich defines this quantity to be 0 if H0(a)
is empty). In any case, let us continue and define the genus of a number field. We will see
some discrepancies appear.

Let i(a) = `(a) − χ(a) and call this the index of specialty of a. This is the analogue of
`(K −D), which is also called the index of specialty in algebraic geometry. The reason for
the terminology is that for most divisors (in fact for all divisors of sufficiently large degree)
we have `(K − D) = 0. Riemann’s contribution to the Riemann-Roch theorem was that
most of the time, `(D) = degD + 1 − g. Roch, a student of Riemann, contributed the
information about the failure of this formula.

Define the genus of K to be g = i(O). Let wK be the number of roots of unity in K.
One computes easily that

g = − log
2r(2π)s

(wK + 1)
√
|∆K |

We make a (rather philosophical) remark about algebraic number theory.

Remark. Let ζK(s) =
∑

ideals a(Na)−s be the Dedekind zeta function of K. This sum
converges and defines a holomorphic function for <s > 1. The class number formula states
that ζK can be analytically continued beyond the line <s = 1 and that

Ress=1 ζK(s) =
2r(2π)s

wK
√
|∆K |

RegK hK
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where RegK is the regulator of K, which is essentially an analogue of ∆K for the units O×K .
If we had taken Neukirch’s definition of H0(a) instead of our own, then the genus would be
the constant

− log
2r(2π)s

wK
√
|∆K |

.

Hence our definition of H0(a) does not allow the genus to appear in the class number
formula. I contend that it should not necessarily appear here, however, for the following
reasons.

The constant in the class number formula is the volume of the norm-one idele class
group. The functional equation proven by Tate in his famous thesis relates the residues of
the poles of zeta functions to this idelic volume. However, in Section 11, we will see that
the constants in the Riemann-Roch theorem come from volume computations in the adeles,
rather than the ideles. The quantity 2r(2π)s/

√
|∆K | appears in both the adelic theory and

idelic theory, in the former case as the volume of the product of the closed unit balls in AK ,
and the latter case as the volume of the product of the unit circles in IK . This similarity
accounts for the appearance of the quantity 2r(2π)s/

√
|∆K | in both places, and thus shows

why the discrepancy lies only at wK .

Theorem 3.11 (Riemann-Roch Formula, Second Form). Let a be a replete ideal. Then

`(a)− i(a) = deg a + `(O)− g.

The proof is again a trivial computation.
We now come to the main theorem of this paper. It is due to Serge Lang.

Theorem 3.12 (Riemann-Roch Theorem For Number Fields). As a ranges over J(ŌK),
we have

|H0(a−1)| = 2r(2π)s√
|∆K |

Na +O((Na)1−
1
n ),

where H0 is as in Definition 3.10, ∆K is as in Definition 2.5 and, as usual, the O term
denotes a function which grows slower than a constant times its argument.

We should note that it is an easy exercise to show that the above theorem implies
that the index of specialty vanishes very rapidly (exponentially). Thus this theorem may
be appropriately viewed as an analogue of Riemann’s contribution to the Riemann-Roch
theorem.

We outline the proof of the Riemann-Roch theorem for number fields. There are four
steps. The first two steps in proving this theorem are reductions, the third is to prove a
theorem in Minkowski theory, and the fourth is to apply it.

Step 1. We have not yet defined the analogue of the divisor class group, but it is easy
to do so. We simply let P (ŌK) be the image of div and define C(ŌK) = Div(ŌK)/P (ŌK).
The result is this.

Proposition 3.13. The functions ` and deg factor through C(ŌK).

Step 2. We have the following lemma.
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Lemma 3.14. Let h = hK be the class number of K (Definition 2.10) and let a1, . . . , ah
be repesentatives for the ideal class group in J(OK). Let c > 0 and

Ai(c) =
{
a =

∏
pnp ∈ J(ŌK)

∣∣∣ af = ai, (np)
fp ≤ c(Na)fp/n for p|∞

}
where fp = 1 if p is real or fp = 2 if p is complex. Then c may be chosen so that

J(ŌK) =

h⋃
i=1

Ai(c)P (ŌK).

By definition of the ideal class group, the finite part of a replete ideal a differs from one
of the ai’s by an element of P (ŌK). Once the finite part is fixed, however, one can only
vary the infinite part of a via multiplication by a unit. But units are ubiquitous; recall that
(after applying log) they span a lattice in a hyperplane in Rr+s. Hence we can bring (the
logarithm of) the infinite part a∞ ∈ Rr+s close to the origin, depending on how big it was
to begin with. This tells us what our constant c should be, and suffices to prove the lemma.

Note that we used the finiteness of the ideal class group and the unit theorem. One
feature of the proof in Section 11 is that it does not use either of these theorems. In fact,
the finiteness of the ideal class group, the unit theorem, and the Riemann-Roch theorem
for number fields can all be shown to be consequences of the compactness of the norm-one
idele class group.

Step 3. So it suffices to consider to consider a ∈ Ai(c) as in the lemma. To estimate the
norms (i.e., N’s) of these replete ideals, one first makes the following definition.

We call a set E ⊂ Rn k-Lipschitz parametrizable if there are finitely many Lipschitz
maps from the k-dimensional unit cube Ik to Rn whose images cover E. The notion of
Lipschitz is the usual one; a function f between two metric spaces (X, d) → (X ′, d′) is
Lipschitz with Lipschitz constant C if for all x, y ∈ X, we have

d′(f(x), f(y)) ≤ Cd(x, y).

The theorem in Minkowski theory, due again to Lang, is this.

Theorem 3.15. Let D ⊂ Rn be a bounded region and assume ∂D is (n − 1)-Lipschitz
parametrizable. Let Λ ⊂ Rn be a lattice with fundamental parallelepiped F . For t ∈ R>0,
let N(t) be the number of lattice points of Λ in tD. Then

N(t) =
Vol(D)

Vol(F )
tn +O(tn−1)

In this case, the constant in the O term depends on D, Λ, and the Lipschitz constants.

Step 4. Finally, one completes the proof by showing that the conditions defining the
sets H0(a−1) at the infinite places give rise to a region in Rn whose boundary is (n − 1)-
Lipschitz parametrizable. Here a ∈ Ai(c). Our set D will have volume 2r(2π)s because it
is a product of r intervals [−1, 1] and s unit discs. The fundamental parallelepiped will be
that of the lattice defined by a−1 and will have volume

√
|∆K |Na−1. We then scale a by

t1/n at the infinite places.
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4 Function Fields

We now discuss function fields, by which we will not mean the function fields of curves over
an algebraically closed field, though these are related. Instead we will be referring to what
are essentially the characteristic p > 0 analogues of number fields. In analogy with number
fields we make the following definition.

Definition 4.1. A function field is a field which is isomorphic to a finite separable extension
of the field of rational functions Fq(t) over the finite field of q elements.

Here q is a power of a prime p. One important difference (though there is a plethora of
deep similarities!) between number fields and function fields is that function fields contain
infinitely many subfields isomorphic to Fq(t), while number fields contain only one copy of
Q. Function fields also arise in the following way.

Let X be a nonsingular curve over the algebraic closure F̄q of Fq. We say X is defined
over Fq if it is the common zero locus in Pn of a set of homogeneous polynomials with
coefficients in Fq (not in any bigger field).

Now the absolute Galois group Gal(F̄q/Fq) acts on Pn by acting on each coordinate.
This is a well defined action. Assume X is defined over Fq. It follows that the action of the
absolute Galois group on Pn induces an action on X.

If X is defined over Fq, then there is a unique subfield of K ⊂ K(X) which is a function
field, in the above sense, and for which K ∩ F̄q = Fq. In fact,

Proposition 4.2. Via the above construction, there is an equivalence of categories between:
(1) The category of nonsingular curves defined over Fq with morphisms nonconstant

morphisms of curves commuting with the action of Gal(F̄q/Fq); and
(2) The category of finitely, separably generated extensions K of Fq of transcendence

degree 1 such that K ∩ F̄q = Fq, with morphisms homomorphisms of fields fixing Fq.

Let K be a function field corresponding to a nonsingular curve X defined over Fq. Then
the discrete valuation rings in K with fraction field K no longer correspond to points of
X, but rather Gal(F̄q/Fq)-orbits of points in X. We call the discrete valuation rings of K
with fraction field K the primes of K.

Recall that a discrete valuation ring A is called so because it comes equipped with a
valuation, i.e., a map v : A\{0} → Z such that v(αβ) = v(α) + v(β) and v(α + β) ≥
min{α, β}, for all α, β, α+ β ∈ A\{0}. The number v(α) is the power of a generator of the
maximal ideal occuring in α, which is independent of the choice of generator. The map v
extends by multiplicativity to the nonzero elements of the fraction field K of A, and hence
defines a homomorphism there.

When K is a function field and p is a prime of K, we let qf be the order of the residue
field of A, which is a finite extension of Fq. Let vp be the associated valuation on K coming
from p. Then | · |p : K → R≥0 given by |α|p = q−fvp(α) and |0|p = 0 is a non-archimedean
absolute value on K. In fact, all nontrivial absolute values on K, up to equivalence, arise
in this way. This is in perfect analogy with the p-adic absolute values on a number field.
We denote the set of all nontrivial absolute values up to equivalence on K by VK . It is
actually in bijection with the primes of K via this construction.

Note that there are no archimedean absolute values on a function field. One justification
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for this is that an absolute value on a field is non-archimedean if and only if the image of
Z is bounded. But since a function field K has positive characteristic, the image of Z→ K
is finite, and so it is certainly bounded.

Let us describe the absolute values on the function field K = Fq(t). The corresponding
nonsingular curve is P1. There is a subring A = Fq[t] ⊂ Fq(t), which is the intersection
of the ring of regular functions on A1 with Fq(t). The ring A in K is the analogue of the
integers in Q. It is a principal ideal domain, hence a unique factorization domain, and a
prime ideal in A is generated by an irreducible element which is unique up to multiplication
by a unit.

Let p be a prime ideal in A with generator π. The localization Ap is a discrete valuation
ring with fraction field K and maximal ideal generated by the element π. Let n be the
degree of π as a polynomial. Then the residue field of Ap is Fqn , the field with qn elements.
Therefore we get the p-adic absolute value | · |p on K given by |fπr|p = q−nr if f is a rational
function with no power of π in its numerator or denominator.

These give all of the absolute values coming from primes which do not correspond to
the point at infinity on P1. The point at infinity is fixed by Gal(F̄q/Fq), and its local ring,
intersected with K, is Fq(t−1)(t−1), the localization of the polynomial ring in t−1 at the
ideal generated by t−1. We call this prime ∞. It gives the following valuation:

v∞(f/g) = deg(g)− deg(f),

and so
|f/g|∞ = qdeg(f)−deg(g).

We get the following analogue of Ostrowski’s theorem.

Theorem 4.3. Let K be the function field Fq(t). Then VK is in natural bijection with the
prime ideals of Fq[t] along with the absolute value | · |∞ as above.

Note that we have made no reference to the infinite absolute values on a general function
field. This is because it depends on the choice of subfield isomorphic to Fq(t), as we will
soon see. Even in the case K = Fq(t), we chose the subring Fq[t] in order to define the infinte
absolute value, but we could have chosen a subring like Fq[t−1] instead. We would then get
a different infinite absolute value. By the way, the map given by t 7→ t−1 corresponds to
an automorphism of P1, which does not fix ∞.

We now discuss extensions of function fields. In the number field case, the discussion
depended heavily on the ring of integers. We have not defined the analogous construction
for function fields, but this will not deter us from discussing ramification. Let us first
explain why, however, we do not discuss the analogue of the ring of integers.

Let K be a function field and choose a subfield F isomorphic to Fq(t). In it, we have the
subring Fq[t]. This is a Dedekind domain, and its integral closure O in K can be considered
an analogue of the ring of integers of a number field. The infinite primes would then be those
primes which are not localizations of O. This depended on a choice of subring isomorphic
to Fq[t]. On the geometric side of the picture, this means we chose an open affine subset of
the curve corresponding to the function field (which is fixed by Gal(F̄q/Fq)), and O is its
ring of regular functions. Thus a ring of integers depends on an arbitrary choice, and this
is why it is not considered here.
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Now let L/K be an extension of function fields. This corresponds to a nonconstant
morphism of nonsingular curves X → Y , where X corresponds to L, and Y to K. We say a
prime P of L lies over a prime p of K if P∩K = p. This would mean that the Galois orbit
of points corresponding to P has the Galois orbit corresponding to p as its image under
the given morphism. Since nonconstant morphisms of nonsingular curves are surjective, it
follows that every prime p of K has a prime P of L lying above it.

Now restrict the valuation vP on L coming from P, to a valuation on K. The image
of K under vP is a subgroup of Z, hence is equal to eZ for some e ≥ 1. This e is the
ramification index of P over p. We should note that the analogue of this definition for
number fields is equivalent to the definition we gave there of the ramification index.

Define the inertia degree of P over p to be the degree of the extension of the residue
field of P over the residue field of p. Then we have an analogue of Theorem 2.4.

Theorem 4.4. Let L/K be an extension of function fields, let p be a prime of K, and let
P1, . . . ,Pr be the primes of L lying above p (there are only finitely many). Let ei, fi be,
respectively, the ramification index and inertia degree of Pi over p. Then

r∑
i=1

eifi = n.

If L/K is moreover Galois, then the Galois group Gal(L/K) permutes the primes above p
transitively. Consequently, all of the ramification indices are equal, to e, say, and all of the
inertia degrees are equal, to f , say, and hence

ref = n.

Finally, let us discuss the divisor theory. Let K be a function field. A divisor on K is
a formal sum of primes of K with integer coefficients, and the set of all divisors is denoted
Div(K). Let X be the nonsingular curve corresponding to K. Since primes correspond to
Galois orbits of points, Div(K) is isomorphic to the group of divisors in Div(X) which are
fixed under the action of Gal(F̄q/Fq). The isomorphism is given by mapping p to the sum
of all points in the corresponding Galois orbit, each with coefficient 1.

In Div(X) we have a notion of degree, and it is this notion of degree that we want to
use on Div(K). Thus if D =

∑
p npp is a divisor on K, we define its degree degD not to

be
∑
np, but rather its degree when considered as a divisor on X. In other words, if fp

is the number of points in the Galois orbit corresponding to the prime p, then we define
deg p = fp.

It is equivalent to define fp to be the degree of the residue field of p over Fq. This
should seem reasonable because in the case of Fq(t), if p is a prime which comes from an
irreducible polynomial π of Fq[t], then the points of A1 ⊂ P1 to which p corresponds will be
exactly those points where π vanishes. The number of such points is the number of roots
of π, i.e., the degree of the extension Fq[t]/(π) over Fq. Localizing at (π) does not affect
the residue field, so we see, at least in this case, that our two notions of fp correspond.

Now let f ∈ K. We define div(f) =
∑

p vp(f)p. The function div is a homomorphism
K× → Div(K). We get the following result.

Theorem 4.5 (Product Formula).

deg ◦ div = 0.
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We define P (K) to be the image of div, and Cl(K) = Div(K)/P (K). A warning to
the reader: If X is the nonsingular curve corresponding to K, it is not true that the group
Cl(K) is the same as Cl(X).

The group Cl(K) is not quite the appropriate analogue of the ideal class group. Instead
we do the following. By the product formula, the degree function deg factors through
Cl(K). We define the group Pic(K) to be the subgroup of Cl(K) consisting of elements of
degree 0. This is the appropriate analogue because:

Theorem 4.6. The group Pic(K) is finite.

Let D ∈ Div(K), D =
∑
npp. Let

L(D) = {f ∈ K× | vp(f) ≥ −np for all p}.

This is a finite dimensional Fq-vector space, and we let `(D) denote its dimension. The
number `(D) is independent of the class of D in Cl(K). We have

Theorem 4.7 (Riemann-Roch Theorem For Function Fields). Let K be a function field.
Then there is a divisor class K ∈ Cl(K) such that for any D ∈ Div(K), we have

`(D)− `(K −D) = degD + 1− g,

where g = `(K) is called the genus of K.

Any divisor in the class K above is called a canonical divisor. Actually, this terminology
is the same in algebraic geometry; any divisor in the class K from the Riemann-Roch
theorem in Section 1 is called a canonical divisor.

In Section 10 we will prove the Riemann-Roch theorem for function fields using the
methods of Tate’s thesis, and obtain a description of the divisor class K. It will turn out
that K is the analogue of the different from algebraic number theory.

One last thing to mention is that there is not really a deep analogue of the unit theorem
here. However, there is a nice way to say what the units are, as follows.

In algebraic number theory, it is not hard to prove that we have an exact sequence

0→ O×K → K× → J(OK)→ C(OK)→ 0,

where K is a number field. The analogue of this sequence, when K is a function field, is

0→ F×q → K× → Div◦(K)→ Pic(K)→ 0,

where Div◦(K) are the divisors of degree 0. Thus the units in this theory are F×q . Notice
they are all roots of unity.

We did not mention this in Section 1, but for a nonsingular curve X over an algebraically
closed field k, the rational functions with no zeros or poles (i.e., those in ker div) are exactly
the constants (i.e., the elements of k×). As one can see, it is the same way in the theory of
function fields. When K is a number field, the units are exactly those elements of K× with
all finite valuations zero. The roots of unity, on the other hand, are exactly those elements
of K× whose finite and infinite valuations are zero, the infinite valuations meaning the
logarithms of the infinite absolute values. This leads to the philosophy that the roots of
unity and zero play the role of constants in algebraic number theory. This is consistent
with the philosophy of the “field with one element,” which we will not go into here.
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5 Local Fields

Since function fields and number fields are so similar, we bring them together in the following
definition. A global field is either a number field or a function field.

To define a local field, we must first define the notion of topological group. A topological
group is a group G with a topology on it for which the multiplication G × G → G is
continuous in the product topology and the inversion G → G is continuous. For any
g ∈ G, the map x 7→ gx is a homeomorphism, and so is the inversion, because these maps
have obvious inverses which are also continuous. An isomorphism in this category is an
isomorphism of groups which is also a homeomorphism. An example of a topological group
is a field with an absolute value on it as in Section 3. The topology here is the metric
topology induced by the absolute value.

To specify a base for the topology on a topological group, it is enough to specify a base
about a single element because translation then gives a base everywhere. We will often
specify a topology this way, and we will usually pick the identity as the element around
which we specify the base.

Definition 5.1. A local field is a field k which is locally compact as a topological field (so
the multiplication and its inversion are continuous, as well as addition and its inversion)
with a topology which is not discrete.

It turns out that the topology on a local field is always metric, and that a local field is
complete with respect to this metric.

Now it happens that local fields are often the best tools at hand to study the local
properties of global fields. Every local field comes from a global field through a process
which we now describe.

Let k be a field equipped with a nontrivial absolute value | · |. We define the completion
k̂ as follows. Let R be the ring of Cauchy sequences in k, in the usual sense, i.e., a
sequence {xn} in k is Cauchy if for every ε > 0, there is an N such that n,m > N implies
|xn − xm| < ε. The addition and multiplication on R are component-wise. Let M ⊂ R be
the ideal of all sequences in R which converge to 0. Then M is maximal and we let k̂ be
the field R/M . The field k injects into k̂ by assigning to any element x ∈ k the constant
sequence {x}. The underlying set of k̂ is the completion of k in the sense of metric topology,
essentially by definition. Hence we get a metric on k̂ which agrees with the metric on k.
The metric topology makes the additive group of k̂ a topological group, and is induced by
an absolute value which extends the one on k. The image in R≥0 of the absolute value on
k̂ is the closure of the image of the absolute value on k.

The first examples of local fields are R and C. These are the completions of number
fields at the infinite absolute values. The next examples are the p-adic numbers and their
finite extensions: The field Qp of p-adic numbers is the completion of Q with respect to
the p-adic absolute value. Elements of Qp may be written formally as Laurent series in the
variable p,

α =

∞∑
i=−n

aip
i, ai ∈ {0, 1, . . . , p− 1}.

In this representation, addition and multiplication are given by carrying as in base p arith-
metic. The absolute value of an element α =

∑
aip

i ∈ Qp is pn where −n is the smallest
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index i for which ai 6= 0.
More generally, we can complete any global field with respect to an absolute value on

it. The completion does not depend on the equivalence class of the absolute value, so we
can speak of completing a global field K at a place of K. Recall that a place is just an
equivalence class of an absolute value; these were classified for number fields in Theorem
3.3 and for function fields, they all came from primes.

Completing a number field K at a finite place corresponding to a prime p of K gives
rise to a finite extension field Kp of Qp, where p is the prime in Z over which p lies. The
field Kp is called the field of p-adic numbers. The degree [Kp : Qp] is ef , where e is the
ramification index of p over p and f is the inertia degree. This will be explained later in
this section. In particular, [Kp : Qp] ≤ [K : Q].

The field Kp has a canonical subring Op, which is the maximal subring with respect to
the property of being compact. It is also the set of elements α ∈ Kp with |α| ≤ 1. This is
a ring because the absolute value on Kp is still non-archimedean. It is also the topological
closure of OK in Kp, and Op ∩K is the localization (OK)p of OK at the prime p. Thus we
see that the field Kp focuses in on the structure of K about the prime p. This is exactly
why Kp is viewed as a local construction.

Now Op is a Dedekind domain which is local, and hence it is a discrete valuation ring.
We therefore call Op the valuation ring of Kp. The valuation ring of Qp is called the ring of
p-adic integers, and is denoted Zp. The valuation ring of Kp is essentially a local analogue
of the ring of integers in K. In fact, if p lies over p, then Op is the integral closure of Zp in
Kp.

Now if K is a function field, there is very little difference in the discussion. If we
complete K with respect to an absolute value corresponding to the prime p, we get a non-
archimedean local field Kp. In the case of Fq(t), if we complete with respect to the place
coming from the ideal (t) ⊂ Fq[t], we obtain the field Fq((t)) of Laurent series over Fq (with
the usual addition and multiplication). The absolute value here is the one which assigns to
a series

∑
ait

i the value qn where −n is the smallest index i for which ai 6= 0.
The properties above for p-adic fields carry over to the completions of function fields.

Let K be a function field and p a prime of K. Then: Kp is an extension of a completion
of Fq(t) at the prime over which p lies, of degree the ramification index multiplied by the
inertia degree; the subring of elements of absolute value at most 1 form a maximal compact
subring Op of Kp, called the valuation ring; and the ring Op is a discrete valuation ring
and is the integral closure of the valuation ring of the completion of Fq(t) at the prime over
which p lies.

Now we have the following classification.

Theorem 5.2. Let k be a local field. Then either:
(1) [Archimedean case] k = R or k = C with the usual topology;
(2) [Non-archimedean case, char k = 0] k is a finite extension of Qp; or
(3) [Non-archimedean case, char k > 0] k is a finite separable extension of Fq((t)).
Every local field arises as a completion of a global field.

Let us briefly discuss the topology of non-archimedean local fields. Let k be a non-
archimedean local field, with valuation ring O and prime p, i.e., p is the maximal ideal
in O. The subgroup O is both open and closed, as is any fractional ideal. A base of
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neighborhoods about 0 is given by pn, n ∈ N.
The group k× will also be important for us. It is also a locally compact abelian group,

but under multiplication. A base of neighborhoods about 1 is given by 1 + pn, n ∈ N. This
base is contained in the units O×, which consists of all elements of absolute value 1.

The next proposition gives a description of O which shows that its topology is very
close to discrete. It says, in fact, that O is profinite, but we will not go into this.

Proposition 5.3. The valuation ring O in a non-archimedean local field k is the inverse
limit, both algebraically and topologically, of the groups O/pn, n ≥ 1, where p is the prime
of O. Here, the groups O/pn are given the discrete topology, and the maps between them
are the projections. Symbolically,

O ∼= lim←−
n∈N
O/pn.

Let l/k be an extension of non-archimedean local fields, with respective valuation rings
Ol and Ok, with, respectively, primes pl and pk. Since Ol is the integral closure of Ok
in l, we can apply our theory of ramification, because the valuation rings are, of course,
Dedekind. Since there is only one prime, the degree of the extension is the ramification
degree multiplied by the inertia degree of the prime extension pl/pk.

If L/K is an extension of global fields and q is a prime of L lying over a prime p of K,
then Lq is naturally an extension of Kp, and the extension of primes in the local case has
the same ramification index and inertia degree as that in the global case. Thus one can
learn information about extensions of global fields by patching together local information.

Important for us will be the local different. It is defined just as in the global case:

Definition 5.4. If l/k is an extension of non-archimedean local fields, then the local dif-
ferent Dl/k of l/k is defined by

Dl/k = C−1l/k,

where
Cl/k = {a ∈ l | Trl/k(a) ∈ Ok}.

The local different is an ideal of Ol.
The local differents patch together to give the global different. More precisely, if L/K

is an extension of number fields, and q/p is an extension of primes in L/K, then the power
of the prime of Lq occuring in the local different is exactly the power of q occuring in the
global different. In fact, one can prove that the global different measures ramification, as
in Theorem 2.7, by first proving it in the local case and then patching together the results.

Now no discussion of local fields will be complete without mentioning Hensel’s lemma.
This result is about the nice behavior of polynomials in non-archimedean local fields, and
is often a good reason to reduce to the local case. Although we will not use it directly in
any of our discussion, it should be noted that some of the results we have mentioned so far
use Hensel’s Lemma in their proof.

Theorem 5.5 (Hensel’s Lemma). Let k be a non-archimedean local field with valuation
ring O and prime p. Let f be a polynomial in O[x], and let f̄ be the reduction of f modulo
p (i.e., reduce its coefficients modulo p). Assume α is a root of f̄ , and that f̄ ′(α) 6= 0, where
the prime denotes the formal derivative. Then f has a root which, moreover, is congruent
to α modulo p.
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6 Adeles and Ideles

The adeles will be, very directly, a patching-together of local information about a global
field at all of its places. Let us give the definition.

Let K be a global field. As is customary, we will denote a general element of the set VK
of all places of K with the letter v, instead of the p we used before, and so the completion
of K at a place v will be denoted Kv. The adeles of K are the set

AK =

(αv) ∈
∏
v∈VK

Kv

∣∣∣∣∣∣αv ∈ Ov for all but finitely many v

 .

They become a ring under component-wise addition and multiplication, and are thus a
subring of the direct product of all of the completions of K. In fact, they become a
topological group (additively) when we declare a base of neighborhoods about 0 to be ∏

v∈VK

Uv

∣∣∣∣∣∣Uv open in Kv, 0 ∈ Uv, Uv = Ov for all but finitely many v

 .

It should be noted that the condition “Uv = Ov” is vacuous at the infinite places of a
number field.

The ideles IK are the units of AK . Alternatively they are defined by

IK =

(αv) ∈
∏
v∈VK

K×v

∣∣∣∣∣∣αv ∈ O×v for all but finitely many v

 .

They are turned into a topological group by declaring a base of neighborhoods about 1 to
be  ∏

v∈VK

Uv

∣∣∣∣∣∣Uv open in K×v , 1 ∈ Uv, Uv = O×v for all but finitely many v

 .

Please note that this is not the subspace topology for the ideles as a subset of AK .
As with the local case, both the adeles and ideles are locally compact topological groups.

This is easy to see using Tychonoff’s theorem.
Hopefully we can give some intuition about these definitions as follows. The adeles

function are a global analogue of the notion of local field, since we stuck together all the
local fields associated to a global field in order to define them. A general element of the
adeles is a vector (av1 , av2 , . . . ) where v1, v2, . . . is an ordering of the elements of VK and
avi ∈ Kvi . These vectors are subject to a global condition that all but finitely many of the
avi must be integral, i.e., in Ovi . Tate called adeles “valuation vectors” in his thesis before
the term “adele” was modernized. This is a nice and lucid description for the adeles. As a
matter of notation, if K is a number field, we think of these vectors as containing first the
entries at the finite places, and then the entries at the infinite places come at the end. For
instance, (1/2, 1/3, 0, 0, 0, . . . , π2/6) is an adele of Q. The topology on the adeles gives∏

v∈Vf

Ov ×
∏

V ∈V∞

Kv ⊂ AK
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the product topology.
The ideles are named so because, for a number field K, they are a natural “thickening”

of the fractional ideals (in fact, the replete ideals) of K. We will see how this is so at the
end of this section.

In practice, it is often wise to be careful when thinking about the adeles AK to dis-
tinguish between the case of K a number field and of K a function field. This is because
there is an archimedean part when K is a number field which will often make computations
different. For instance, in reference to an earlier remark, when mimicking Tate’s thesis for
function fields, the problem of finding the residues of the poles of certain zeta functions
comes down to a volume computation in the ideles which is considerably easier in the func-
tion field case than in the number field case.

Adelic methods are often the correct ones for working globally. As an illustration of
this, we will use the ideles to prove the finiteness of the class number. A proof of the unit
theorem can also be given like this without too much effort. First we need some theorems
on the topology of the adeles and ideles.

Now there is an embedding K ↪→ AK which is the diagonal embedding, i.e., α ∈ K
maps to the adele with α at all components. It is well defined because only finitely many
valuations of an element in K are negative. Restricting this to K× gives an embedding
K× ↪→ IK . In fact, K× lands in a certain subgroup of IK described as follows.

For v ∈ VK , let ‖ · ‖v denote the canonical absolute value corresponding to v if v is not
complex, and let it denote the square of the canonical absolute value if v is complex. For
an idele a = (αv) ∈ IK , we let

‖a‖ =
∏
v∈VK

‖αv‖v.

This product is well defined because almost all of the terms ‖av‖v are 1, and it defines
a homomorphism IK → R>0. We call ‖a‖ the norm of the idele a. Define I1K to be the
subgroup of IK of all ideles of norm 1. We have the following variant of the product formula.

Theorem 6.1 (Product Formula, Adelic). The image of K× under the embedding K× ↪→
IK above, is in I1K .

We also have the following compactness theorem.

Theorem 6.2. The group K is discrete in AK and the quotient AK/K, under the quotient
topology, is compact.

The group K× is discrete in I1K and the quotient I1K/K×, under the quotient topology,
is compact.

Let K be a number field, so that we have archimedean absolute values. We said above
that the ideles are a thickening of the fractional ideals. This is how: We can define a
surjective homomorphism p : I1K → J(OK) by

(xv) 7→
∏
v-∞

p
vpv (xv)
v ,

where pv is the prime associated to v ∈ VK . The kernel is the set of all ideles whose finite
components all have absolute value 1. We denote this set I1∞. This subgroup is open since,
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at the finite places, it is the product of the open sets Ov. The quotient I1K/I1∞ is therefore
discrete since the quotient of a topological group by an open subgroup is discrete.

We can also pass to the quotient C(OK), and the kernel of I1K → C(OK) is thus I1∞ ·K×.
Hence we obtain an isomorphism I1K/I1∞ ·K× ∼= C(OK). The group I1K/I1∞ ·K× is discrete
since I1K/I1∞ is, and it is compact since I1K/K× is. Therefore it is finite, thus proving that
the ideal class group is finite!

This concludes the first half of this paper. We will now incorporate abstract Fourier
analysis into the picture in a serious way. This is what John Tate did in his famous 1950
thesis, which can be found in Cassels and Fröhlich [1], where it was first published (in
1967). He reproved the analytic continuation of certain zeta functions in a manner which
is perhaps best described as extremely local-to-global. However, we will use his methods
to reprove the Riemann-Roch theorem for number fields, and we will not touch upon the
theory of zeta functions.

7 Abstract Harmonic Analysis

The purpose of this section is to describe the basic theory of abstract harmonic analysis on
locally compact abelian groups.

We begin by recalling a fundamental result from the theory of Borel measures on locally
compact spaces.

Theorem 7.1 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
topological space and L a positive linear functional on the space Cc(X,R) of continuous
complex-valued functions with compact support on X. Then there is a unique regular Borel
measure µ such that the functional L is given by

Lf =

∫
X
f(x) dµ(x).

This is basic to abstract measure theory.
We will care only about measures on locally compact abelian groups G (G will always

be Hausdorff). On these groups, there is one particular kind of measure which is extremely
important.

Let G be a locally compact abelian group. A regular Borel measure µ on G is called a
Haar measure if it is translation invariant, i.e. µ(x+ E) = µ(E) for all measurable E and
all x ∈ G. Here x+ E = {x+ y | y ∈ E}.

One example is the Lebesgue measure on R or C. The first result on Haar measures is
the following.

Theorem 7.2. Let G be a locally compact abelian group. Then there exists a Haar measure
µ on G which is as unique as possible, in the following sense: If ν denotes another Haar
measure on G, then there is a positive constant c such that ν = cµ.

One proves the theorem by constructing a positive linear functional on Cc(G) which is
invariant under translation by elements of G. Often, we will specify a Haar measure on a
specific group G explicitly, and by this theorem, it will be unique up to scaling.

31



Proposition 7.3. Let G1, . . . , Gn be locally compact abelian groups with Haar measures
µ1, . . . µn respectively. Then the product measure µ1 × · · · × µn is a Haar measure on
G1 × · · · ×Gn with the product topology (under which G1 × · · · ×Gn is locally compact by
Tychonoff’s theorem). Note that in this case, the product measure will be characterized by
the formula

µ1 × · · · × µn(K1 × · · · ×Kn) = µ1(K1) · · ·µn(Kn)

for compacts Ki ⊂ Gi (because the Haar measure is regular). The analogous statement
holds for infinite products, as long as all but finitely many terms are compact with total
measure 1.

Now we construct the Pontryagin dual of a locally compact abelian group. Let T denote
the unit circle in C, which we will consider with its usual topology. Fix a locally compact
abelian group G with Haar measure µ(x) (often we will write dx instead), and write

Ĝ = {ξ : G→ T | ξ is a continuous homomorphism}.

Then Ĝ is a group, called the Pontryagin dual, or simply the dual of G. Its elements are
called (unitary) characters of G. We give Ĝ a topology as follows. Let K ⊂ G be compact
and U ⊂ T open. Let B(K,U) be the set of all elements of Ĝ for which f(K) ⊂ U . Then
we declare the topology on G is the one which has a subbase consisting of all B(K,U)
as K varies over compacts in K and U over opens in T . In other words, we give Ĝ the
compact-open topology.

Another way to describe this topology is as follows. Let {fα} be a net in Ĝ. Then
{fα} converges to f ∈ Ĝ if and only if these functions converge uniformly to f on compact
subsets of G.

Proposition 7.4. Let G be a locally compact abelian group. Then Ĝ is also a locally
compact abelian group.

We give some propositions concerning the behavior of this group.

Proposition 7.5 (Orthogonality Relation). Assume G is compact with Haar measure µ =
dx. If ξ ∈ Ĝ and ξ 6= id, then ∫

G
ξ(x) dx = 0.

Otherwise, if ξ = id, then of course, this integral equals µ(G).

Proposition 7.6. If G is compact, then Ĝ is discrete, and vice-versa; if G is discrete, then
Ĝ is compact.

Proposition 7.7. Let G1, . . . , Gn be locally compact abelian groups, and let G be the product
G = G1 × · · · ×Gn with the product topology. Then

Ĝ ∼= Ĝ1 × . . .× Ĝn,

the isomorphism being one of topological groups.
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One may also develop a theory for arbitrary products of compact groups. We will not
do this since we do not need that theory. However, we will develop the theory for restricted
direct products in Section 9.

Next we discuss the Fourier analysis on locally compact abelian groups. Let G be a
locally compact abelian group. For f ∈ L1(G), we define a function f̂ on Ĝ by

f̂(ξ) =

∫
G
f(x)ξ(x) dx.

(Note that the complex conjugate ξ is the multiplicative inverse of ξ). This is called
the Fourier transform of f , and it is the analogue in this theory of the classical Fourier
transform. Actually, it specializes to the classical Fourier transform, for in fact, R ∼= R̂ via
the map x 7→ (y 7→ e−2πixy), which therefore gives

f̂(y) =

∫
R
f(x)e2πixy dx.

The main result on the Fourier transform is as follows.

Theorem 7.8 (Fourier Inversion Theorem). For f ∈ L1(G) and f̂ ∈ L1(Ĝ), there is a
Haar measure dξ on Ĝ such that

f(x) =

∫
Ĝ
ξ(x)f̂(ξ) dξ.

One uses this to prove the following theorem.

Theorem 7.9 (Pontryagin Duality). The dual of Ĝ is topologically isomorphic to G via
the map

x 7→ (ξ 7→ ξ(x)) : G→ ̂̂
G.

Finally, let us discuss the analogue of the Poisson summation formula.
First, for G a locally compact abelian group and H a closed subgroup, define

H⊥ = {ξ ∈ Ĝ | ξ(x) = 1 for all x ∈ H}.

Proposition 7.10. (a) H⊥ is a closed subgroup of Ĝ;
(b) If G is identified with its double dual under Pontryagin duality, then (H⊥)⊥ = H;
(c) Let π : G → G/H be the projection. Define Φ : (G/H )̂ → H⊥ by η 7→ η ◦ π. Then

Φ is well defined and an isomorphism of topological groups;
(d) Let [ξ] denote the class of ξ in Ĝ/H⊥. Define Ψ : Ĝ/H⊥ → Ĥ by [ξ] 7→ ξ|H . Then

Ψ is well defined and an isomorphism of topological groups.

Theorem 7.11 (Poisson Summation Formula). Let H be a closed subgroup of G. Assume
f is continuous and in L1(G) and f̂ ∈ L1(H⊥). Assume further that the integral

∫
H f(x+

y) dy converges absolutely and uniformly (in the obvious sense) on some compact subset
containing x ∈ G. Then, with appropriate Haar measures, we have∫

H
f(x+ y) dy =

∫
H⊥

f̂(ξ)ξ(x)dξ.
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The proof is a nice exercise using the Fourier inversion theorem. One first proves it for
f ∈ Cc(G) and then reduces to this case.

As an example, consider G = R and H = Z (the latter with the discrete topology).
We also identify R with its dual as above. Give Z the counting measure, which is a Haar
measure because Z is discrete. Then we have that Z⊥ = Z under this identification, and
the formula says ∑

n∈Z
f(x+ n) =

∑
n∈Z

f̂(n)e2πinx.

This is what is classically called the Poisson summation formula.
Finally, let us set some notation. Following Lang, we denote by Inv(G) the set of all

complex valued functions f on G which are continuous and in L1(G), and such that f̂ is
continuous and in L1(Ĝ). In particular, any f ∈ Inv(G) satisfies the hypotheses of the
Fourier inversion theorem. Finally, we always take the Haar measures on G and Ĝ to be
self-dual, i.e., the Haar measure on Ĝ must make the Fourier inversion theorem hold given
the choice of Haar measure on G.

8 Analysis On Local Fields

Throughout this section, k will denote a local field. Then k and k× are locally compact
abelian groups, the first one under addition and the second one under multiplication. We
define a character on k, which we will call the standard character.

Assume first that k = Qp. Write α ∈ Qp as α =
∑∞

i=−n aip
i. Define a map λ : Qp → R/Z

as follows. We map α to
∑−1

i=−n aip
i, this finite sum being taken in the rational numbers,

viewing p ∈ Q. This obviously defines an additive homomorphism Qp → Q/Z, which we
take to be λ. Note that it is trivial on Zp. Then we define ψ = e2πiλ.

If k = Fp((t)), we define a very similar map λ, given by
∑∞

i=−n ait
i 7→

∑−1
i=−n aip

i, the

field Fp being identified with the set {0, 1, . . . , p− 1}. Then ψ is again e2πiλ.
If k = R then we define ψ(α) = e−2πiα.
Any local field is a finite (separable) extension of these three fields above. With this in

mind, for k a general local field, define ψ(·) = ψ0(Tr(·)), where k0 is a choice of subfield
isomorphic to Qp, Fp((t)), or R, ψ0 is the standard character on k0, and the trace Tr is
taken over the extension k/k0. For instance, the standard character on C becomes ψ(α) =
e−4πi<(α). Also, note that the kernel of the standard character in the non-archimedean case
is the set of all α ∈ k such that Tr(α) is in the valuation ring of k0. By definition, this set
is precisely the local inverse different D−1.

For any α ∈ k, the map β 7→ ψ(αβ) is also a character on k. In fact, this construction
gives the following duality.

Theorem 8.1. Let k be a local field and ψ the standard character on k. Then there is a
topological isomorphism k ∼= k̂ via α 7→ (β 7→ ψ(αβ)).

This theorem is also true if ψ is replaced by any other nontrivial character on k.
A notation which we will use frequently is as follows. Let k be non-archimedean. The

function N on fractional ideals of k is defined on the prime p of the valuation ring O by
Np = |O/p|, and then extended by linearity to all fractional ideals (which are just the
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integer powers of p). This is analogous to the definition for number fields given in Section
2.8

Now we choose a Haar measure µ on the local field k. If k = R, then we choose µ to be
the Lebesgue measure. If k = C, then we choose µ to be twice the Lebesgue measure (which
gives the unit disc measure 2π; this will be important later). If k is non-archimedean, we
choose µ to be such that the valuation ring O in k has measure µ(O) = (ND)−1/2. Note
that the measure of O determines the Haar measure µ as follows. Let p ⊂ O be the prime.
The open sets pm for m ≥ 0 form a base of neighborhoods about 0. Let {α} be a set
of representatives for O/pm. Then O is the disjoint union of (Np)m open balls of radius
(Np)−m, namely the sets α + pm. Hence the open balls of radius (Np)−m have measure
(Np)−m(ND)−1/2.

Our choice of Haar measure µ is reasonable because it is the one which is self-dual:

Proposition 8.2. The measure µ above is such that µ is self-dual, considered as a measure
both on k and k̂, where k̂ is identified with k as in the previous theorem. In particular, if
ψ is the standard character, if f ∈ Inv(k), and f̂ is the Fourier transform of f with respect
to ψ, then

ˆ̂
f(x) = f(−x).

For completeness, we briefly discuss Haar measure on k×. Let dx be a Haar measure
on the additive group k. If k is archimedean, define

d×x =
dx

‖x‖
,

and if k is non-archimedean, define

d×x =
Np

Np− 1

dx

‖x‖
.

Recall that ‖ · ‖ is the usual absolute value unless k = C, in which case it is the square of
the usual absolute value.

The measure d×x is a Haar measure on k×, and we have

Proposition 8.3. If k is a non-archimedean local field, then∫
O×

d×x = (ND)−1/2.

Thus O× gets the same measure in k× as O does in k.

9 Analysis On Adeles and Ideles

Now we patch together the local results of the previous section into something global. It is
convenient to introduce the following general concept.

Consider the following set-up: The set {v} is a set of indices, Gv are locally compact
abelian groups indexed by the v’s, and Hv ⊂ Gv is an open compact (hence also closed)
subgroup, one for all but finitely many v. The set of such v for which Gv does not have
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a specified open compact subgroup like this, is denoted S∞. Then we define the restricted
direct product of the Gv’s with respect to the Hv’s, as a group, to be

G =
∏′

v

Gv =

{
(xv) ∈

∏
v

Gv

∣∣∣∣∣xv ∈ Hv for all but finitely many v /∈ S∞

}
.

The prime on the product indicates that it is restricted, and it is defined exactly by the
right hand side above. We put a topology on G by declaring a base of neighborhoods about
0 to be {∏

v

Uv

∣∣∣∣∣Uv ⊂ Gv open, Uv = Hv for all but finitely many v /∈ S∞

}
.

Note that since the Gv’s have a base of compact neighborhoods about 0 ∈ Gv for each v,
the restricted direct product G is locally compact by Tychonoff’s Theorem.

Finally, note that the adeles and the ideles are restricted direct products of groups
indexed by the places of a global field. More precisely, let K be a global field. Then if
we take {v} = VK , S∞ = V∞ (in the number field case), Gv = Kv, and Hv = Ov, then
G = AK . On the other hand, if we take instead Gv = K×v and Hv = O×v , then G = IK .

Now in the general setting above, we have the following theorem.

Theorem 9.1. The characters on G are precisely those maps of the form

χ(x) =
∏
v

χv(xv)

where x = (xv), χv is a character on Gv which is equal to the restriction of χ to Gv, and
where all but finitely many of the χv’s are trivial on Gv (so that the product is finite for all
x).

This theorem allows us to describe the structure of the Pontryagin dual of a restricted
direct product: Consider the case where our indexed groups are Ĝv and the subgroups are
H⊥v . Since Hv is open in Gv, Gv/Hv is discrete, and so (Gv/Hv )̂ is compact. Also, since
Hv is compact, Ĥv is discrete. Hence, since Ĝ/H⊥v

∼= Ĥ⊥v , we see that H⊥ is also open.
Thus we may take the restricted direct product of the Ĝv’s with respect to the subgroups
H⊥v .

Theorem 9.2. The group Ĝ is topologically isomorphic to the restricted direct product of
the groups Ĝv with respect to the subgroups H⊥v . The isomorphism is given by the map
χ 7→

∏
χv.

Now we discuss Haar measure. If S is a finite set of indices v, we let GS denote the set
of all x ∈ G such that xv ∈ Hv for all v /∈ S. Then GS is open, and is equal to the following
product:

GS =
∏
v/∈S

Hv ×
∏
v∈S

Gv.

Assume dxv is a Haar measure on Gv, and the these measures are chosen so that Hv has
measure 1 for all but finitely many v. Then each GS gets a Haar measure which is the
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product measure of the dxv’s. By taking unions and using countable additivity, we get a
Haar measure dx on G.

As for Ĝ, if dχv is the dual measure of dxv, then the same construction above yields a
Haar measure dχ on Ĝ, considered as a restricted direct product of the groups Ĝv. The
measure dχ is dual to dx.

The Fourier analysis behaves very well with these constructions:

Theorem 9.3. Let fv ∈ Inv(Gv) for all v, and assume fv is the characteristic function of
Hv for almost all v. Then f =

∏
fv is in Inv(G) and we have

f̂(χ) =
∏

f̂v(χv)

We now specialize to the adeles and ideles. So we let K be a global field, and we let
ψv denote the standard character on the additive group of the completion Kv at the place
v. Then ψv is trivial on Ov for all non-archimedean v because Ov is contained in the
local inverse different D−1v . Hence we get a character ψ =

∏
v ψv on AK which we call the

standard character on AK .
All of the general theory above allows us to put the together local self-duality at each

place and obtain a global self-duality. The result is this.

Theorem 9.4. The group AK is topologically isomorphic to its own dual under the map

x 7→ (y 7→ ψ(xy)).

Moreover, under this identification, K⊥ = K. Finally, the product of the usual Haar
measures on the local fields Kv is a Haar measure on AK , which becomes self-dual under
this identification.

10 The Riemann-Roch Theorem of Tate

We first state two lemmas which will be useful to us in the sequel. The first one is also
used in the proof of the Riemann-Roch theorem of Tate, which we omit.

Lemma 10.1. Let K be a global field, and let ‖ · ‖ be the usual norm on IK . If dx is the
Haar measure on AK , then for y ∈ IK , we have d(yx) = ‖y‖dx.

Lemma 10.2. Let k be a non-archimedean local field. Let O be the valuation ring of k, and
let f be the characteristic function of O. Then the Fourier transform f̂ of f with respect to

the standard character and the usual Haar measure on k is ND1/2
v times the characteristic

function of the inverse local different D−1.

Theorem 10.3 (Riemann-Roch Theorem of Tate). Let K be a global field. Let f, f̂ ∈
Inv(AK) both be continuous. Assume that the series

∑
α∈K f(y(x + α)) converges for all

x ∈ AK and all y ∈ IK , uniformly in x on compact subsets of AK and uniformly in y on
compact subsets of IK . Assume also that

∑
α∈K f̂(αy) converges for all y ∈ IK . Then

1

‖y‖
∑
α∈K

f̂

(
α

y

)
=
∑
α∈K

f(αy).
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The proof of this theorem is actually just a very straightforward application of the
Poisson summation formula, using the fact that K⊥ = K. To illustrate why this theorem
bears the name of Riemann-Roch, we use it to prove the Riemann-Roch theorem for function
fields as in Theorem 4.7.

Let K be a function field, and let f be the characteristic function of the adelic unit ball
B =

∏
vOv in AK . Let D =

∑
nvv be a divisor on K, where we identify the set of primes

of K with VK . We can associate an idele x(D) to the divisor D as follows. Choose a prime
element πv in Ov for all v. Then we define x(D) = (πnv

v ). Note

‖x(D)‖ =
∏
v

‖πnv
v ‖ =

∏
v

q−fvnv = q− degD.

Now we claim that
q`(D) =

∑
α∈K

f(αx(D)).

This sum is finite since x(D)−1B is compact and K is discrete, and the sum just counts
how many elements of K are in x(D)−1B. Now let α ∈ K×. Then v(α) ≥ −nv for all v
means precisely that α ∈ x(D)−1B. But this condition is the same as the one for α to be
in L(D). Since also 0 ∈ L(D) and f(0) = 1, the sum above just counts elements of L(D).
So it is equal to |L(D)| = q`(D), as desired. Note that this implies that `(D) is finite.

Now let ψ be the standard character on AK . It is trivial at each place on the inverse of
the local different, and nontrivial at each place on any larger ideal. Let mv be the valuation
of the generator of the local different Dv, and set K = −

∑
mvv. Now Tate’s Riemann-Roch

theorem obviously applies to f , and we get

1

‖x(D)‖
∑
α∈K

f̂(αx(D)−1) =
∑
α∈K

f(αx(D)),

i.e., ∑
α∈K

f̂(αx(D)−1) = q`(D)−degD.

It thus remains to show that g = `(K) is such that
∑
f̂(αx(D)) = q`(K−D)+1−g.

Now putting together the information of Lemma 10.2 as all places, we see that f̂ is∏
v ND

−1/2
v times the characteristic function of the product of the local inverse differents.

By definition, the product of the inverse local differents is just x(K)B. Thus, like above,
α ∈ K× is counted by f̂ if and only if it is in x(K)−1x(D)B, and so f̂ counts the elements

in L(K −D) with a factor of
∏
v ND

−1/2
v . If we prove that 1− g = logq(

∏
v ND

−1/2
v ), then

we get the theorem by taking logq’s. Let us prove this now.
One sees easily, using, for instance, the product formula, that only the constants Fq

are in L(0), and so `(0) = 1. One also computes easily that qdegK =
∏
v NDv. Thus the

formula reads
`(K)− 1 = degK + 1− `(K),

i.e.,

2g − 2 = logq(
∏
v

NDv).

We are done.
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11 An Analytic Proof of the Riemann-Roch Theorem for
Number Fields

In this section we provide an analytic proof of the Riemann-Roch theorem for number fields.
Since the material of this section is new, we carry out the details with considerable care.

We recall the Riemann-Roch theorem for number fields here for the convenience of the
reader. See Definitions 2.5, 3.4, 3.8, and 3.10. for notation.

Theorem 11.1 (Riemann-Roch Theorem For Number Fields). Let K be a number field of
degree n with r real embeddings and s complex embeddings. As a ranges through J(ŌK),
we have the estimate

|H0(a−1)| = 2r(2π)s√
|∆K |

Na +O((Na)1−
1
n ).

Actually, we will not prove this directly. Instead, we prove a similar result which is
completely adelic, as follows:

Let B ⊂ AK be the product of the closed unit balls in Kv, v ∈ VK , and let χB be its
characteristic function. As a ranges through IK , we have the estimate∑

α∈K
χB(αa−1) =

2r(2π)s√
|∆K |

‖a‖+O(‖a‖1−
1
n ).

The first instinct may be to apply Tate’s Riemann-Roch theorem to χB, like one does
in the case of function fields. This would not work, however, since the infinite components
of χ̂B violate the hypotheses of that theorem for reasons related to continuity. Instead, we
will convolve χB with a bump function, use Riemann-Roch to estimate a sum involving the
resulting function, and compare this sum to the one above. The estimations we need will
rely on the following notion of surface area.

Fix a region D ⊂ AK , by which we mean D is compact and equal to the closure of
its interior, and the finite component of D is compact and open. Given another region
E ⊂ AK , we define

ED = {x+ (y1 − y0) | x ∈ E, y1, y0 ∈ D}.
This region is simply the union of all translates of D which intersect E.

Actually, we will want to consider this construction when D is skewed. Given an idele
a ∈ IK and a subset X ⊂ AK , we define aX = {ax | x ∈ X}. If t > 0 is a real number, we
may also view t as the idele whose finite components are all 1 and whose infinite components
are all t, so that the expression tD makes sense and is a region. Then we define the adelic
surface area of E with respect to D to be the derivative

SD(E) = lim
t→0+

Vol(EtD)−Vol(E)

t
,

if it exists.

Lemma 11.2. Let D,E be regions for which SaD(E) exists for all norm 1 ideles a. Let
C : [0, 1]× I1K → R be defined by

C(t, a) =

{
Vol(EtaD)−Vol(E)

t if t 6= 0

SaD(E) if t = 0.
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Then C is continuous and defined everywhere.

Proof. Let a = (av)v∈VK be a norm 1 idele. Since volume is translation invariant, we may
assume 0 ∈ D, and hence in aD. Then there is a finite subset S ⊂ VK , including the infinite
places, such that aD is the product

∏
v/∈S Ov away from the places in S. Let ε > 0 and let

b = (bv) be a norm 1 idele such that: ‖bv/av − 1‖ < ε for all infinite places v; ‖bv/av − 1‖
is so small for v ∈ S ∩ Vf that skewing aD at the place v does not change the region aD;
and bv ∈ O×v for v /∈ S. The set of all b satisfying these conditions is open in I1K .

Now these conditions on b imply that bD = (b/a)aD is such that (1+ ε)−1bD ⊂ aD and
(1 + ε)−1aD ⊂ bD. Thus

(1 + ε)−1aD ⊂ bD ⊂ (1 + ε)aD,

and hence, for t > 0,
E(1+ε)−1taD ⊂ EtbD ⊂ E(1+ε)taD.

Therefore, taking volumes, subtracting the volume of E and dividing by t, we get

(1 + ε)−1C((1 + ε)−1t, a) ≤ C(t, b) ≤ (1 + ε)C((1 + ε)t, a)

This proves that C is continuous on (0, 1]× I1K and taking the limit of the above estimate
as t→ 0 gives continuity everywhere.

In what follows, B ⊂ AK is the product of the closed unit balls at each place, B =∏
v∈Vf Ov ×

∏
v∈V∞ B(0, 1). This is a region in AK . Also, D will denote the closure of a

fixed fundamental domain of AK modulo K for which SaD(E) exists for all norm 1 ideles
a. Also, we let ϕ be a continuous function with support in D and total integral 1, such
that the series

∑
α∈K |ϕ̂(αb)| converges and is continuous for ideles b. We will exhibit such

a pair D,ϕ in a moment, but for now, we will assume that they exist.
Now for two functions g, h on AK , define their convolution g ∗ h as usual:

g ∗ h(x) =

∫
AK

g(y)h(x− y) dy.

Then (g ∗ h)̂ = ĝĥ. Let f = χB ∗ ϕ.

Lemma 11.3. Let a ∈ I1K and t > 1. There is a constant c1, depending only on D and ϕ,
such that ∑

α∈K
χB(α(ta)−1) ≤

∑
α∈K

f(α(ta)−1) + c1.

Proof. We have

f((ta)−1α) =

∫
χB(x)ϕ((ta)−1α− x) dx =

∫
taB

ϕ((ta)−1(α− x))t−n dx.

Since ϕ has total integral 1, this integral is equal to χB((ta)−1α) whenever the support of
ϕ((ta)−1(α − x)) is contained completely inside or outside taB, i.e., it does not intersect
the boundary of taB. Now the support of ϕ((ta)−1(α − x)) intersects the boundary of
taB only when ta(α − D) intersects the boundary of taB, which happens if and only if
α − D intersects the boundary of B, and this happens only finitely many times. Thus
f((ta)−1α) 6= χB((ta)−1α) for finitely many α, say c of them, and the difference is at most
1. Thus we are done if we take c1 = c.
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Lemma 11.4. There is a continuous function C1 on I1K such that, in the notation of
Lemma 11.2, ∑

α∈K×
f(atα) ≤ t−1C1(a)C(t−1, a−1).

Proof. We have

f̂(atα) = χ̂B(atα)ϕ̂(atα)

= ϕ̂(atα)

∫
B
ψ(atαx) dx

= t−nϕ̂(atα)

∫
taB

ψ(αx) dx.

Now since the integral of ψ(αx) is zero over any translate D for α ∈ K× (because the
integral of a character over a compact group is zero), the integral

∫
taB ψ(αx) dx is equal

to −
∫
E\taB ψ(αx) dx, where E is the union of all K-translates of D which intersect taB.

Since the maximum value of ψ is 1, this is smaller in absolute value than Vol(E\taB). But
by the definition of E, we know that E ⊂ (taB)D. So

Vol(E\taB) ≤ Vol((taB)D)−Vol(taB) = tn(Vol(Bt−1a−1D)−Vol(B)) = tn−1C(t−1, a−1).

Thus
|f̂(atα)| ≤ t−1C(t−1, a−1)|ϕ(atα)|.

Summing over all α ∈ K× gives the result since the series
∑

α∈K× |ϕ̂(atα)| is continuous
by assumption and must eventually decrease as t increases.

Now we exhibit a partcular D and ϕ for which the above theory works.

Lemma 11.5. Let D have finite component
∏
v∈Vf Ov and infinite component equal to a

fundamental parallelepiped of OK in Rn. Let ϕ have finite component the characteristic
function of

∏
v∈Vf Ov and infinite component any smooth function supported in the funda-

mental parallelepiped of OK in Rn, such that the total integral of ϕ is 1. Then:
(1) D is a fundamental domain for AK modulo K and is a region;
(2) SaD(B) exists and is finite for all norm 1 ideles a;
(3) The series

∑
α∈K |ϕ̂(αb)| converges and is continuous for ideles b.

Proof. The assertion (1) is trivial and well known. Assertion (3) follows from the fact that
ϕ̂(αb) is only nonzero for α in a certain fractional ideal, and from the fact that the infinite
component of ϕ̂ is a Schwartz function, because the infinite component of ϕ is.

For (2), let P be the infinite component of aD, and let B′ be the infinite component
of B, so B′ is a product of r intervals and s discs. The finite components of BtaD are the
same for all t, so we only need to show that the derivative of Vol(B′tP ) exists, where the
regions we are dealing with are now in Rn, and B′tP has the same meaning as above, but is
a region in Rr × Cs.

For this, let O be in the interior of B′ and choose spherical coordinates (t, θ) =
(t, θ1, . . . , θn−1) around O. Let f(t, θ) be the function which sends (t, θ) to the distance
from the point O to the boundary of B′tP . This is single-valued because each B′tP is convex
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and it is continuous because its graph, which is the boundary of B′tP , is connected. By
definition, the volume Vol(B′tP ) is equal to the integral∫

Sn−1

f(t, θ) dθ.

for an appropriate normalization of the form dθ, where Sn−1 is the (n− 1)-sphere about O.
Thus we want to show that the limit

lim
t→0+

1

t

∫
Sn−1

(f(t, θ)− f(0, θ)) dθ

exists.
To do this, we show that the difference quotient

f(t, θ)− f(0, θ)

t

is increasing and uniformly bounded above in θ. This will prove that the integral

lim
t→0+

∫
f(t, θ)− f(0, θ)

t
dθ

is increasing and bounded above, and hence has a limit, as desired. So to prove this, we
first note that

f(t, θ)− f(0, θ)

t
≤ diam(tP )

t
= diamP,

because the distance between any point on the boundary of B′0P = B′ from the boundary
of B′tP is at most the distance between any two points in P , by definition.

Now to show that the above difference quotient is increasing, we only need to show that
function f(t, θ) for fixed θ is concave-down, in the sense of freshman calculus. This means
that for any t and any 0 < c < 1, we must have

cf(t, θ) ≤ f(ct, θ).

We claim that if v is a vector in the direction of θ, if x ∈ B′ is the point on the ray from O in
the direction of θ, and x+ v ∈ B′tP , then x+ cv ∈ B′ctP . This assertion implies immediately
that f(t, θ) is concave down in t, and its verification will complete the proof of the lemma.

Now for such x and v, let y ∈ B∞ such that x+ v = y + (p1 − p0) for some p1, p0 ∈ tP .
Then we compute

x+cv = x+cx−cx+cv = (1−c)x+c(x+v) = (1−c)x+c(y+p1−p0) = ((1−c)x+cy)+(cp1−cp0).

But (1− c)x+ cy ∈ B′ because B′ is convex, and cp1, cp0 ∈ ctP , so x+ cv ∈ B′ctP . We are
done.

Now we can complete the proof of our main theorem.

Theorem 11.6. As a ranges through IK , we have the estimate∑
α∈K

χB(αa−1) =
2r(2π)s√
|∆K |

‖a‖+O(‖a‖1−
1
n ).
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Proof. We apply Tate’s Riemann-Roch theorem to f : In the notation of Lemmas 11.2, 11.3,
11.4, we have ∑

α∈K
χB(α(ta)−1) ≤

∑
α∈K

f(α(ta)−1) + c1

= ‖ta‖
∑
α∈K

f(αta) + c1

≤ ‖ta‖f̂(0) + c1 + t−1‖ta‖C1(a)C(t−1, a−1).

Now

f̂(0) = ϕ̂(0)χ̂B(0) = Vol(B) =
2r(2π)s√
|∆K |

and t−1‖ta‖ = ‖ta‖1−
1
n because a has norm 1. Thus we have the desired estimate in t for

each a separately. To get a uniform estimate, we note that the quantity∑
α∈K

χB(α(ta)−1)

does not depend on the class of a modulo K×. Thus we may replace the function (t, a) 7→
C1(a)C(t−1, a−1) by the function C ′ : [0, 1]× (I1K/K×)→ R defined by

C ′(t−1, x) = inf{C1(a)C(t−1, a−1) | π(a) = x}

where π : I1K → I1K/K× is the quotient map. Since [0, 1] × (I1K/K×) is compact, the
following lemma suffices to complete the proof of the theorem.

Lemma 11.7. (a) Let f be a positive continuous real valued function on a topological space
X, and let π : X → Y be a quotient map. Then F : Y → R given by F (y) = inf{f(x) | x ∈
π−1(y)} is upper semicontinuous on Y , which means that the sets F−1([a,∞)) are closed
in Y for all a ∈ R.

(b) An upper semicontinuous function on a compact topological space is bounded above
by a constant.

Proof. Though this is an easy exercise, we include its proof for lack of a suitable reference.
(a) With the notation as in the lemma, we need to show that the sets F−1((−∞, a))

are open. Let b ∈ R. The set U = f−1((−∞, b)) ⊂ X is open by continuity of f . Then
π(U) is open in Y . But π(U) contains all points y ∈ Y for which there is an x ∈ X with
π(x) = y and f(x) < b. This means exactly that F (x) < b, and so F−1((−∞, b)) is the
open set π(U).

(b) Let F be an upper semicontinuous function on the compact space Y . The sets
F−1((−∞, a)) for a ∈ R form an open cover of Y . Thus it has a finite subcover, say
{F−1((−∞, ai))}. Let j be such that aj is maximal amongst the ai’s. Then F−1((−∞, aj)) =
Y since all of the sets F−1((−∞, ai)) are subsets of this one. Hence F (y) < aj for all
y ∈ Y .

Now we apply the theorem above to give a proof of the Riemann-Roch theorem for
number fields:
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Proof (of Theorem 11.1). For x = (xv)v∈VK ∈ IK , let ax be the replete ideal defined by

ax =
∏
p∈Vf

p−vp(xp) × (|xv|)v∈V∞ .

Then, by definition, Nax = ‖x‖ and the sum∑
α∈K

χB(αx−1)

counts the number of elements in H0(a−1x ). Then we apply our theorem for ideles x to get
the Riemann-Roch theorem for replete ideals ax. Since the map x 7→ ax from IK to J(OK)
is clearly surjective, we obtain the Riemann-Roch theorem for number fields.

Some comments:

I do not assert that the proof above is easier than Lang’s original proof. Rather, I
think that the techniques of the above proof are very general and that they perhaps con-
tain more major ideas. In particular, this proof uses the Riemann-Roch theorem of Tate
in a fashion similar to the proof of the Riemann-Roch theorem for function fields given in
the previous section. Thus we have a bridge between these three Riemann-Roch theorems
which was not previously known.
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