
Algebraic Number Theory Notes: Local Fields

Sam Mundy

These notes are meant to serve as quick introduction to local fields, in a way which does
not pass through general global fields. Here all topological spaces are assumed Hausdorff.

1 Qp and Fq((x))

The basic archetypes of local fields are the p-adic numbers Qp, and the Laurent series field
Fq((t)) over the finite field with q elements. These fields come with a natural topology which
is intertwined with their algebraic structure. As such, they should be viewed through not
only an algebraic lens, but also a geometric lens as well. Before defining these fields and
their topology, let us give a general definition.

Definition 1.1. A topological field is a field K equipped with a topology such that all four
field operations are continuous, i.e., the functions

+ : K ×K → K,

− : K → K,

· : K ×K → K,

(·)−1 : K× → K

are all continuous. Here, of course, K ×K has the product topology and K× the subspace
topology.

One way to give a field a topology is to give it an absolute value, which will induce a
metric on the field:

Definition 1.2. Let K be a field. An absolute value on K is a function | · | : K → R≥0
satisfying the following properties:

(1) [Positive Definiteness] |x| = 0 if and only if x = 0.
(2) [Multiplicativity] |ab| = |a| · |b| for all a, b ∈ K.
(3) [Triangle Inequality] |a+ b| ≤ |a|+ |b| for all a, b ∈ K.

If K is a field with an absolute value, one can define a metric d on K by setting
d(a, b) = |b−a|. One checks easily that this does indeed define a metric on K. Furthermore,
the four field operations are continuous with respect to this metric. In fact, essentially the
same proofs from calculus, which show this fact for K = R, work for any field with an
absolute value.

Let us now discuss absolute values on Q. Of course, we have the standard absolute
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value on Q which assigns to a ∈ Q the value a if a ≥ 0, and −a otherwise. But there are
many other absolute values as well. For instance, let p be a prime number. If n is a nonzero
integer, write vp(n) for the largest integer m for which pm|n. That is, vp extracts the exact
power of p occurring in the factorization of n. Let x ∈ Q be nonzero, and write x as a
fraction x = a/b with a, b ∈ Z. Then we set |x|p = pvp(b)−vp(a) and |0|p = 0. It is an easy
exercise to check that the assignment x 7→ |x|p is an absolute value on Q. It is called the
p-adic absolute value. In fact, one checks that it satisfies the ultrametric inequality, namely
the inequality

|x+ y| ≤ max{|x|, |y|} (1)

holds for | · | = | · |p.
The ultrametric inequality has some funny consequences for the metric topology on

Q induced by | · |p. For instance, two metric balls intersect if and only if one contains
the other. (This is true more generally for any metric space with metric d satisfying
d(x, y) ≤ max{d(x, z), d(z, y)}.)

Proposition/Definition 1.3. Let K be a field with an absolute value |·|. Then |·| satisfies
the ultrametric inequality (1) if and only if the set {|n · 1| | n ∈ Z} is bounded in K. In
either case we say K is nonarchimedean.

Proof. The proof is not enlightening. It is in Milne’s algebraic number theory notes [4]
Theorem 7.2 if you want to see it.

We are ready to define Qp. Let R be the set of Cauchy sequences in Q with respect to
the p-adic absolute value. That is,

R = {{xn}∞n=1 | for any ε > 0, there is an N such that |xm − xn|p < ε for n,m > N} .

This is a ring under termwise addition and multiplication. Let M be the set of p-adic
Cauchy sequences converging to 0. Then M is an ideal and we define

Qp = R/M.

We call Qp the field of p-adic numbers. It is simply the completion of Q with respect to
the p-adic absolute value. This field inherits an absolute from Q in the obvious way: If
x, y ∈ Qp and assume x is the class of the Cauchy sequence {xn}. Then we define

|x| = lim
n→∞

|xn|p,

which is well defined because {xn} is Cauchy. It is not hard to check that this is indeed
an absolute value on Qp. The ultrametric inequality still holds for Qp by Proposition 1.3.
Finally we note that Qp is complete (as a metric space) by construction.

Before we go any further, we note one important property about the p-adic absolute
value, namely that its nonzero values are all integral powers of p. In particular, the image
of Q× under | · |p is discrete in R>0, and so it follows that the image of Q×p under its absolute
value is also the integral powers of p.

We will discuss properties of Qp in a moment, but first, we repeat this process for the
rational function field Fq(x) in place of Q. For a nonzero polynomial f ∈ Fq[x], let vx(f) be
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the exact power of x dividing f . So vx(f) is the index of the first nonzero coefficient of f . Let
h ∈ Fq(t) be nonzero, and write h = f/g with f, g ∈ Fq[t]. Then define |h|x = qvx(g)−vx(f),
and |0|x = 0. Then | · |x is an absolute value on Fq(x). The field Fq(x) is nonarchimedean
because the image of Z is bounded (indeed, it is finite.)

We can then let R be the ring of Cauchy sequences in Fq(t) with respect to | · |x, and
M the ideal of sequences converging to 0. Then one can check that

R/M ∼= Fq((x)).

Here Fq((x)) is the field of Laurent series with coefficients in Fq,

Fq((t)) =

{ ∞∑
i=n

aix
i

∣∣∣∣∣ ai ∈ Fq, n ∈ Z

}
.

In this way, we get an absolute value, and hence a metric topology, on Fq((x)) under
which Fq((x)) is complete. This absolute value has an easy description, however: Let
f =

∑
aix

i ∈ Fq((x)), and let n be the smallest index for which an 6= 0. Then |f | = q−n.
Qp and its absolute value have a similar description. One can check that every p-adic

number a ∈ Qp can be written in a unique way as

a =

∞∑
i=−n

aip
i

where n ∈ Z and ai ∈ {0, . . . , p− 1}. Here the series is interpreted at the p-adic limit of its
partial sums:

∞∑
i=−n

aip
i = lim

m→∞

m∑
i=−n

aip
i.

In order to add or multiply two such series, one must “carry” as if dealing with base-p
expansions of integers. Finally, we have |

∑
aip

i| = p−n where n is the smallest index for
which ai 6= 0.

2 Local Fields

Now that we have constructed some basic examples, let us now define the notion of local
field.

Definition 2.1. A local field is a topological field K whose topology is locally compact and
not discrete (and Hausdorff; recall we are assuming all topological spaces are Hausdorff.)
By locally compact we mean that every point in K has an open neighborhood U such that
the closure U is compact.

As a good example of some of the basic techniques involved in working with topological
algebraic objects, you should do the following exercise.
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Exercise 1. (i) Prove that a topological groupG (defined in the obvious way; multiplication
and inversion are continuous) is Hausdorff if and only if {1} is closed in G.

(ii) Prove that a (Hausdorff) abelian topological group G is locally compact if and only
if the following condition holds: There is a basis B of neighborhoods about 0 such that
U is compact for all U ∈ B. In particular, if this condition is satisfied for the underlying
additive group of a topological field K, then K is a local field.

This definition of local field is hard to work with at first, so we state some equivalent
conditions for a field to be a local field.

Theorem 2.2. The following are equivalent conditions on a topological field K:
(1) K is a local field.
(2) K has an absolute value | · | which induces a topology on K that makes K complete

and locally compact.
(3) K is a finite extension of Qp or Fq((x)), or K = R or K = C.

Note that at the moment we have not defined absolute values on the finite extensions
of Qp or Fq((x)). This will be done in Section 4. For now we remark on the proof of this
theorem.

The proof of (1)⇒(2) is somewhat involved. One uses heavily the Haar measure on the
locally compact abelian group K (viewed additively.) For the reader who knows a little
about this, one defines the module of an element a ∈ K× as follows. Let µ be the Haar
measure on K. Then by the uniqueness of the Haar measure, the new measure ν on K
defined by ν(E) = µ(aE) differs from µ by a nonzero constant which we denote mod(a).
This is the module of a. We can then define |a| = a for a ∈ K× and |0| = 0. This recovers
the absolute value on K, but the proof is by no means trivial. See Ramakrishnan and
Valenza [6], or Weil [9].

In any case we will assume (1)⇒(2), i.e., we will really take (2) as our working definition
of local field. We will not assume that we know (3) in these notes, but (3) does provide a
convenient way to think of local fields.

Let us show that Qp and Fq((x)) are locally compact with respect to the topology
induced by their absolute values, so that we know they are local fields (They are Hausdorff,
since they are metric.) We do the proof for Qp; the case of Fq((x)) is formally similar.

First we define a particular subring of Qp as follows. Let

Zp = {a ∈ Qp | |a| ≤ 1}.

This is a ring by the fact that Qp is nonarchimedean: If a, b ∈ Zp, so that |a|, |b| ≤ 1, then
|a+ b| ≤ max{|a|, |b|} ≤ 1, hence (a+ b) ∈ Zp. Also |−a| = |a| implies that Zp has additive
inverses.

The ring Zp is called the ring of p-adic integers, and it is a very important structure
attached to Qp. (The analogue of this in the case of Fq((x)) is the subring Fq[[x]] of formal
power series.)

Exercise 2. Prove that Z is dense in Zp.

By definition, Zp is closed in Qp (it is a closed metric ball.) By discreteness of the
absolute value, it is also open: Let c ∈ R with 1 < c < p. Then Zp = {a ∈ Qp | |a| < c}.

4



We will show that Zp is compact, which will imply that Qp is locally compact because any
open neighborhood of 0 in Zp will have compact closure in Zp. In particular, the intersection
of any basis about 0 with the open set Zp will satisfy the condition of Exercise 1, (ii).

To prove compactness of Zp, it is enough to prove sequential compactness since Zp is
metric. We will do this by considering the “base-p” expansions from the end of the last
section. Note that if a ∈ Zp, since |a| ≤ 1, its expansion starts after the 0th place. So let
an ∈ Zp be a sequence, and write

an =

∞∑
i=0

ai,np
i

with ai,n ∈ {0, . . . , p − 1} (the digit a0,n may be zero. For Fq[[x]], the “digits” are none
other than the coefficients of a given power series.) Then there are infinitely many an with
the same first digit a0,n. Choose a subsequence of the an with the same first digit, call it
an0 . Then repeat this process for the digit a1,n0 to get another subsequence an1 , and so on.
Then the sequence {a1k}∞k=0 converges. Therefore Zp is (sequentially) compact, and as we
pointed out, this proves that Qp is locally compact, hence a local field.

3 Structure of Local Fields

Now that we have shown that Qp and Fq((t)) are local fields, let us study local fields in
general. We will assume from now on that all local fields in question are nonarchimedean.
After all, this assumption only rules out the cases of R and C in the end.

We begin by attaching three pieces of data to a local field. These data will not exist in
the archimedean case. Recall that we are taking for granted that every local field has an
absolute value which determines its topology.

Proposition/Definition 3.1. Let K be a local field.
(1) We define the valuation ring of K to be

OK = {a ∈ K | |a| ≤ 1}.

This is a discrete valuation ring. In particular, OK is a local ring. Furthermore OK is
compact.

(2) The prime of K is the set

p = {a ∈ K | |a| < 1}.

The set p is the principal prime ideal in the discrete valuation ring OK . Its generator is
called a uniformizer for K. Such a uniformizer is generally denoted π.

(3) The residue field of K is the residue field k of OK , i.e.,

k = OK/p.

The field k is finite.

Proof. We proceed in several steps.
Step 1. We must first show thatOK is a ring. But this follows easily from the ultrametric
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inequality, as it did for Zp above. Similarly p is an ideal in OK .
Step 2. Let us show that OK is a local ring with maximal ideal p. Well, consider the

set OK\p. By definition,
OK\p = {a ∈ K | |a| = 1}.

Therefore it follows from the multiplicativity of the absolute value on K that for any
a ∈ OK\p, we have a−1 ∈ OK\p. Conversely, and for similar reasons, any element b ∈ p
has |b−1| > 1, and is therefore not invertible in OK . Thus OK\p = O×K . If follows that OK

is local with maximal ideal p.
Step 3. We now prove that OK is compact. This will be a consequence of the local

compactness of K. In fact, consider the metric balls

Br = {a ∈ K | |a| < r}

for r > 0. By basic metric space theory, the Br form a basis of neighborhoods about 0 in
K. Therefore one of them, say Bs, is contained in a compact set E. Let t = s/2. Then
the closed metric ball Ct = {a ∈ K | |a| ≤ t} is contained in E and is therefore compact.
Let t′ = max{|a| | a ∈ Ct}, so that Ct = Ct′ . Let α ∈ Ct′ be an element of absolute value
t′. Then multiplication by α−1 is a continuous map Ct′ → OK which is easily seen to be a
homeomorphism (its inverse is multiplication by α.) Since Ct′ = Ct is compact, so must be
OK .

Step 4. Next we show that k is finite. This is not hard now that we have the compactness
of OK : k is the set of cosets of p in OK , and therefore OK is the disjoint union of translates
of p indexed by k. Since p is open and OK is compact, the number of such translates must
be finite; i.e., k is finite.

Step 5. Finally, we show that p is principal, from which it follows that OK is a discrete
valuation ring. For this it is enough to show that the maximum

max{|a| | a ∈ p}

exists. Indeed, if this is the case, let π be an element of p whose absolute value is maximal.
Then, similarly to what we saw at the end of Step 3, multiplication by π is a homeomorphism
between OK and p, i.e., p = πOK , as desired.

Now to show that the maximum above exists, it suffices to show that p is compact. But
this is not hard: We just saw that OK is a finite disjoint union of copies of p. Therefore, p
is compact if and only if OK is compact, which we know from Step 3. So we are done.

Corollary 3.2. Let K be a local field and π ∈ K a uniformizer. Then every element of K×

can be written uniquely as uπn for u ∈ O×K a unit and n ∈ Z. Thus we have an isomorphism

K× ∼= O×K × Z.

(This isomorphism is not canonical because the Z factor depends on the choice of π.)

In the context above, it follows from this corollary that

K = FracOK = OK [π−1].
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Exercise 3. For K = Qp, we have that, by definition, OQp = Zp. Prove that p = pZp, and
k ∼= Fp. Similar exercise for Fq((x)).

Next, we come to the celebrated Lemma of Hensel.

Theorem 3.3 (Hensel’s Lemma). Let K be a local field, and let f(T ) ∈ OK [T ] be a
polynomial with coefficients in OK . Let f̃(T ) ∈ k[T ] be the reduction of this polynomial
modulo p, i.e., reduce the coefficients of f modulo p. Assume α ∈ k is simple root of f̃ , i.e.,
f̃(α) = 0 and f̃ ′(α) 6= 0. Then there exists a ∈ OK such that f(a) = 0 and a ≡ α (mod p)

Proof. See Milne [4], Theorem 7.33 for a proof of a more general statement.

As a nice application of Hensel’s Lemma, we have the following exercise, which I highly
recommend doing if you have not seen it already.

Exercise 4. Show that Zp contains the (p − 1)st roots of unity, and they are all distinct
modulo p.

4 Extensions of Local Fields

We begin by stating a theorem which says, for one, that extensions of local field are still
local fields.

Theorem 4.1. Let K be a (nonarchimedean) local field with absolute value | · |, and let
L/K be a finite extension. Then there is a unique absolute value | · |L on L which extends
the one on K, and it makes L a local field. Furthermore, | · |L is given by the formula

|α|L = |NmL/K(α)|1/n

where n = [L : K].

Proof. The best proof of this fact that I have found, given what has been developed so far
in these notes, is in Neukirch [5], Chapter II, Theorem 4.8. I may come back and include
a proof later.

Let L/K be a extension of local fields which, for safety, I will assume to be separable.
There are two useful pieces of data which one can attach to L/K. Let πK be a uniformizer
for K and πL one for L. Then by Corollary 3.2 we can write πK = uπeL for unique u ∈ O×L
and e ∈ Z. In fact, it is easy to see that we must have e ≥ 1. If we change πK or πL, then
this formula will only change by a unit, so e does not depend on the choice of uniformizers.
The number e is called the ramification index of L/K.

Another useful piece of information comes from the residue fields. Let pK be the prime
in K and pL that in L. Note that OK ⊂ OL and pK ⊂ pL (because, by the uniqueness in
Theorem 4.1, if a ∈ K with |a| ≤ 1, then |a| ≤ 1 in L also. Similarly for strict inequality.)
Thus there is an inclusion of fields OK/pK ⊂ OL/pL. The degree [OL/pL : OK/pK ] is
called the inertia degree of L/K, and it is traditionally denoted by f .

We have the following theorem, which holds for general Dedekind domains.
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Theorem 4.2. Let L/K be a finite separable extension of local fields, and let e and f be,
respectively, the ramification index and inertia degree. Then

[L/K] = ef.

Proof. We will see this in a more general context later, so I will omit the proof.

Definition 4.3. Let L/K be a finite separable extension of local fields with ramification
index e. We call L/K unramified if e = 1. We say L/K is totally ramified if e = [L : K].

Example 4.4. For an example of a totally ramified extension of local fields, consider the
extension field K = Qp(p

1/n) of Qp. Let | · | denote the absolute value on Qp which we have
been using above, and let | · | also denote its unique extension to K. We will compute the
uniformizer of K and its residue field. We know from Exercise 3 that p is a uniformizer
for Qp. Also we have (p1/n)n = p. We can therefore conclude that the ramification index e
of K/Qp is at least n: if p1/n is a uniformizer then e is exactly n by definition. Otherwise
p1/n is, up to unit, a power of a uniformizer of K, in which case e is even bigger. However,
[K : Qp] ≤ n. Thus we have

n ≤ e ≤ ef = [K : Qp] ≤ n,

which forces all of these quantities to be equal. Thus we conclude

[K : Qp] = n, e = n, f = 1

and also that p1/n is a uniformizer of K, and finally that the residue field of K is Fp.

Example 4.5. For an example of an unramified extension of local fields, consider Fqn((x))/Fq((x)).
Since Fqn/Fq is an extension of degree n, tensoring with Fq((x)), for instance, shows that
Fqn((x))/Fq((x)) is an extension of degree n. We see easily that f = n for this extension,
and therefore e = 1, i.e., this extension is unramified.

The analogue of this extension in characteristic zero is Qp(ζn)/Qp where p - n and ζn
is a primitive nth root of unity. Indeed, such an extension is unramified. I will omit the
proof of this fact since I cannot think of one at the moment which does not pass through
the theory of number fields.

5 Some Galois Theory of Local Fields

The goal of this section is to prove the following theorem.

Theorem 5.1. Let L/K be an unramified Galois extension of local fields. Then L/K is
cyclic.

Proof. Since L/K is unramified, f = [L : K] and e = 1, where e and f are, respectively,
the ramification index and inertia degree. Let π be a uniformizer for K. Then this says
π is a uniformizer for L and [OL/πOK : OK/πOK ] = [L : K]. For convenience, write
l = OL/πOK and k = OK/πOK for the residue fields.

Now let σ ∈ Gal(L/K). From the explicit description of the absolute value of L in
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Theorem 4.1, it is easy to see that |σa| = |a| for all a ∈ L. Thus σ restricts to an
automorphism of OL preserving OK pointwise. Since π ∈ K, σπ = π, and hence, reducing
modulo π, we see that σ induces an automorphism of l over k which fixes k. In other words,
we have defined a homomorphism ϕ : Gal(L/K)→ Gal(l/k). We want to show that this is
an isomorphism. Since these groups have the same order f , it is enough to show injectivity
of ϕ.

To see this, let g be the minimal polynomial over k of a generator α of l×. Then
g(x) = (x− α)(x− σα) · · · (x− σf−1α) and all the σiα are distinct in l, and none of them
are in k. Let G be a polynomial in OK [x] which reduces to g modulo π. The G is irreducible
because its reduction modulo π is. By Hensel’s Lemma, G has n distinct roots in OL which
are congruent to the roots of g modulo π. Thus, if a is a root of G, then L = K(a).
But Gal(L/K) permutes the roots of G transitively, and hence the image of Gal(L/K) in
Gal(l/k) permutes the roots of g transitively. Thus since there are f roots g and f elements
in Gal(L/K), it follows that ϕ is injective, hence an isomorphism. Since Gal(l/k) is cyclic,
this completes the proof.

In the setting of the above proof, let τ ∈ Gal(l/k) be the element α 7→ αq, where q = |k|.
Then τ generates Gal(l/k). The element ϕ−1(τ) ∈ Gal(L/K) is called the Frobenius ele-
ment. It is denoted by Frob and it characterized by the condition that Frob a ≡ aq (mod π).
This element plays a very important role in class field theory.

I have included more references than those cited above. They are all good sources
for reading about algebraic number theory and related topics.
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